Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause for nanoparticle size distribution elucidated

14.06.2013
Chemists and physicists at the Max Planck Institute for Polymer Research have been able to rule out a general assumption about the size distribution of nanoparticles.

When buying shoes it does not matter how good-looking the shoes might be if the size does not fit. This is similar with nanoparticles, which are made by the so-called emulsion-solvent evaporation process.

This process allows for the production of nanoparticles with high purity. Nevertheless they can still be improved: so far, their size distribution cannot be fully controlled. However, a defined size is of prime importance for future applications, whether it is for drug delivery or for intelligent coatings.

An interdisciplinary and international research collaboration at the Max Planck Institute for Polymer Research in Mainz was able to rule out coalescence as reason for the borad nanoparticle size distribution. Coalescence describes the tendency of colloidal droplets to melt together.

For the first time, Daniel Crespy, who is group leader in the department of Katharina Landfester, was able to prove that the coalescence between droplets during the process is not significantly responsible for the broad size distribution of the particles.

“This study elucidates the mechanism of a common process used for the preparation of nanoparticles,“ says Daniel Crespy about his research results.

The chemist labeled the original materials prior to the preparation of the nanoparticles. Some polymers were labeled with red and others with blue dyes. During the synthesis, the polymers and a solventwere emulsified in water. After the evaporation of the solvent, solid nanoparticles are obtained. This is a common method to produce all types of nanoparticles. Crespy’s trick: Upon adding both red- and blue-labeled polymers to the solvent, nanoparticles with both colors were obtained. The so-called negative control shows that if red and blue particles are mixed, no aggregation occurs because species with both dyes were not detected.

What happens if a red emulsion from polymer and solvent is mixed with a blue emulsion? Less than every twelfth particle –around 8 percent – were labeled with both red and blue dyes, which means that coalescence does not play a significant role in the process.
For the first time, the scientists were able to directly quantify the occurrence of coalescence. Together with Kaloian Koynov, who is physicist and expert for spectroscopic methods at the MPI-P, Crespy could monitor the coalescence of nanometer sized droplets by fluorescence correlation spectroscopy.

The experimental results were finally confirmed by simulations based on Monte-Carlo algorithms performed by Davide Donadio, group leader of a Max Planck Research Group. Thanks to this study, the reason for the broad size distribution could be attributed to the process itself.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/177319/PM6-13eng
- Website of the MPI for Polymer Research with pressrelease and aditional information
http://onlinelibrary.wiley.com/doi/10.1002/smll.201300372/abstract
- the publication in SMALL Vol.9 Issue 11

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/177319/PM6-13eng

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>