Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause for nanoparticle size distribution elucidated

14.06.2013
Chemists and physicists at the Max Planck Institute for Polymer Research have been able to rule out a general assumption about the size distribution of nanoparticles.

When buying shoes it does not matter how good-looking the shoes might be if the size does not fit. This is similar with nanoparticles, which are made by the so-called emulsion-solvent evaporation process.

This process allows for the production of nanoparticles with high purity. Nevertheless they can still be improved: so far, their size distribution cannot be fully controlled. However, a defined size is of prime importance for future applications, whether it is for drug delivery or for intelligent coatings.

An interdisciplinary and international research collaboration at the Max Planck Institute for Polymer Research in Mainz was able to rule out coalescence as reason for the borad nanoparticle size distribution. Coalescence describes the tendency of colloidal droplets to melt together.

For the first time, Daniel Crespy, who is group leader in the department of Katharina Landfester, was able to prove that the coalescence between droplets during the process is not significantly responsible for the broad size distribution of the particles.

“This study elucidates the mechanism of a common process used for the preparation of nanoparticles,“ says Daniel Crespy about his research results.

The chemist labeled the original materials prior to the preparation of the nanoparticles. Some polymers were labeled with red and others with blue dyes. During the synthesis, the polymers and a solventwere emulsified in water. After the evaporation of the solvent, solid nanoparticles are obtained. This is a common method to produce all types of nanoparticles. Crespy’s trick: Upon adding both red- and blue-labeled polymers to the solvent, nanoparticles with both colors were obtained. The so-called negative control shows that if red and blue particles are mixed, no aggregation occurs because species with both dyes were not detected.

What happens if a red emulsion from polymer and solvent is mixed with a blue emulsion? Less than every twelfth particle –around 8 percent – were labeled with both red and blue dyes, which means that coalescence does not play a significant role in the process.
For the first time, the scientists were able to directly quantify the occurrence of coalescence. Together with Kaloian Koynov, who is physicist and expert for spectroscopic methods at the MPI-P, Crespy could monitor the coalescence of nanometer sized droplets by fluorescence correlation spectroscopy.

The experimental results were finally confirmed by simulations based on Monte-Carlo algorithms performed by Davide Donadio, group leader of a Max Planck Research Group. Thanks to this study, the reason for the broad size distribution could be attributed to the process itself.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/177319/PM6-13eng
- Website of the MPI for Polymer Research with pressrelease and aditional information
http://onlinelibrary.wiley.com/doi/10.1002/smll.201300372/abstract
- the publication in SMALL Vol.9 Issue 11

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/177319/PM6-13eng

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>