Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause for nanoparticle size distribution elucidated

14.06.2013
Chemists and physicists at the Max Planck Institute for Polymer Research have been able to rule out a general assumption about the size distribution of nanoparticles.

When buying shoes it does not matter how good-looking the shoes might be if the size does not fit. This is similar with nanoparticles, which are made by the so-called emulsion-solvent evaporation process.

This process allows for the production of nanoparticles with high purity. Nevertheless they can still be improved: so far, their size distribution cannot be fully controlled. However, a defined size is of prime importance for future applications, whether it is for drug delivery or for intelligent coatings.

An interdisciplinary and international research collaboration at the Max Planck Institute for Polymer Research in Mainz was able to rule out coalescence as reason for the borad nanoparticle size distribution. Coalescence describes the tendency of colloidal droplets to melt together.

For the first time, Daniel Crespy, who is group leader in the department of Katharina Landfester, was able to prove that the coalescence between droplets during the process is not significantly responsible for the broad size distribution of the particles.

“This study elucidates the mechanism of a common process used for the preparation of nanoparticles,“ says Daniel Crespy about his research results.

The chemist labeled the original materials prior to the preparation of the nanoparticles. Some polymers were labeled with red and others with blue dyes. During the synthesis, the polymers and a solventwere emulsified in water. After the evaporation of the solvent, solid nanoparticles are obtained. This is a common method to produce all types of nanoparticles. Crespy’s trick: Upon adding both red- and blue-labeled polymers to the solvent, nanoparticles with both colors were obtained. The so-called negative control shows that if red and blue particles are mixed, no aggregation occurs because species with both dyes were not detected.

What happens if a red emulsion from polymer and solvent is mixed with a blue emulsion? Less than every twelfth particle –around 8 percent – were labeled with both red and blue dyes, which means that coalescence does not play a significant role in the process.
For the first time, the scientists were able to directly quantify the occurrence of coalescence. Together with Kaloian Koynov, who is physicist and expert for spectroscopic methods at the MPI-P, Crespy could monitor the coalescence of nanometer sized droplets by fluorescence correlation spectroscopy.

The experimental results were finally confirmed by simulations based on Monte-Carlo algorithms performed by Davide Donadio, group leader of a Max Planck Research Group. Thanks to this study, the reason for the broad size distribution could be attributed to the process itself.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/177319/PM6-13eng
- Website of the MPI for Polymer Research with pressrelease and aditional information
http://onlinelibrary.wiley.com/doi/10.1002/smll.201300372/abstract
- the publication in SMALL Vol.9 Issue 11

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/177319/PM6-13eng

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>