Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito genes linked to insecticide resistance may be new target in fight against malaria

05.02.2009
Malaria remains one of the most serious diseases worldwide, claiming the lives of more than one million people per year in tropical and sub-tropical regions, the majority of whom are children under five years of age.

Efforts to eliminate this mosquito-borne illness rely heavily on prevention measures, but there are growing concerns about resistance to insecticides. In a study published online today in Genome Research, researchers have identified specific mosquito genes associated with resistance to a common class of insecticide, a significant step toward the execution of more effective malaria control strategies.

Eradication of mosquitoes that carry the malarial parasite has relied heavily on the use of insecticides for spraying inside of homes and treatment of mosquito netting. There are very few insecticides that are both effective and low-cost, while at the same time safe for humans. Developing new insecticides will be time consuming and expensive, therefore understanding the genetic and biological basis of resistance to insecticides currently in use will be critical for more effective prevention measures in the field.

In this study, an international team of scientists led by Dr. Charles Wondji of the Liverpool School of Tropical Medical has identified the genetic basis of resistance to common pyrethroid insecticides in the mosquito Anopheles funestus, one of the major malarial vectors in Africa. The group studied strains of An. funestus that are both susceptible and resistant to pyrethroids, and narrowed down the potential genetic culprits to members of a family of genes coding for enzymes known as cytochrome P450s. The P450s are common to all classes of organisms, and are considered a first line of defense against toxins.

The researchers found two cytochrome P450 genes in An. funestus that are associated with pyrethroid resistance. Dr. Hilary Ranson of the Liverpool School of Tropical Medicine, a co-author of the study, explained that what makes this finding remarkable is that this particular type of cytochrome P450s were also recently implicated in pyrethroid resistance in Anopheles gambiae, the other major malaria-carrying mosquito in Africa. "If the enzymes responsible for resistance are very similar in both species, there is a much greater incentive to invest efforts in identifying specific enzyme inhibitors with the knowledge that they will likely be effective at overcoming resistance in both major malaria vectors," said Ranson. Furthermore, Ranson noted it is critical that these mosquito P450 genes do not have close relatives in the human genome, meaning that targets developed against these mosquitoes should have low risk for toxicity in humans.

This report of genetic markers that can be used to predict insecticide resistance in laboratory populations of An. funestus may be a landmark finding in malaria prevention when applied to the evaluation of wild mosquito populations. "Routine use of these molecular markers for resistance will provide early warning of future control problems due to insecticide resistance and should greatly enhance our ability to mitigate the potentially devastating effects of resistance on malaria control," said Ranson.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>