Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mosquito genes linked to insecticide resistance may be new target in fight against malaria

Malaria remains one of the most serious diseases worldwide, claiming the lives of more than one million people per year in tropical and sub-tropical regions, the majority of whom are children under five years of age.

Efforts to eliminate this mosquito-borne illness rely heavily on prevention measures, but there are growing concerns about resistance to insecticides. In a study published online today in Genome Research, researchers have identified specific mosquito genes associated with resistance to a common class of insecticide, a significant step toward the execution of more effective malaria control strategies.

Eradication of mosquitoes that carry the malarial parasite has relied heavily on the use of insecticides for spraying inside of homes and treatment of mosquito netting. There are very few insecticides that are both effective and low-cost, while at the same time safe for humans. Developing new insecticides will be time consuming and expensive, therefore understanding the genetic and biological basis of resistance to insecticides currently in use will be critical for more effective prevention measures in the field.

In this study, an international team of scientists led by Dr. Charles Wondji of the Liverpool School of Tropical Medical has identified the genetic basis of resistance to common pyrethroid insecticides in the mosquito Anopheles funestus, one of the major malarial vectors in Africa. The group studied strains of An. funestus that are both susceptible and resistant to pyrethroids, and narrowed down the potential genetic culprits to members of a family of genes coding for enzymes known as cytochrome P450s. The P450s are common to all classes of organisms, and are considered a first line of defense against toxins.

The researchers found two cytochrome P450 genes in An. funestus that are associated with pyrethroid resistance. Dr. Hilary Ranson of the Liverpool School of Tropical Medicine, a co-author of the study, explained that what makes this finding remarkable is that this particular type of cytochrome P450s were also recently implicated in pyrethroid resistance in Anopheles gambiae, the other major malaria-carrying mosquito in Africa. "If the enzymes responsible for resistance are very similar in both species, there is a much greater incentive to invest efforts in identifying specific enzyme inhibitors with the knowledge that they will likely be effective at overcoming resistance in both major malaria vectors," said Ranson. Furthermore, Ranson noted it is critical that these mosquito P450 genes do not have close relatives in the human genome, meaning that targets developed against these mosquitoes should have low risk for toxicity in humans.

This report of genetic markers that can be used to predict insecticide resistance in laboratory populations of An. funestus may be a landmark finding in malaria prevention when applied to the evaluation of wild mosquito populations. "Routine use of these molecular markers for resistance will provide early warning of future control problems due to insecticide resistance and should greatly enhance our ability to mitigate the potentially devastating effects of resistance on malaria control," said Ranson.

Peggy Calicchia | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>