Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito genes linked to insecticide resistance may be new target in fight against malaria

05.02.2009
Malaria remains one of the most serious diseases worldwide, claiming the lives of more than one million people per year in tropical and sub-tropical regions, the majority of whom are children under five years of age.

Efforts to eliminate this mosquito-borne illness rely heavily on prevention measures, but there are growing concerns about resistance to insecticides. In a study published online today in Genome Research, researchers have identified specific mosquito genes associated with resistance to a common class of insecticide, a significant step toward the execution of more effective malaria control strategies.

Eradication of mosquitoes that carry the malarial parasite has relied heavily on the use of insecticides for spraying inside of homes and treatment of mosquito netting. There are very few insecticides that are both effective and low-cost, while at the same time safe for humans. Developing new insecticides will be time consuming and expensive, therefore understanding the genetic and biological basis of resistance to insecticides currently in use will be critical for more effective prevention measures in the field.

In this study, an international team of scientists led by Dr. Charles Wondji of the Liverpool School of Tropical Medical has identified the genetic basis of resistance to common pyrethroid insecticides in the mosquito Anopheles funestus, one of the major malarial vectors in Africa. The group studied strains of An. funestus that are both susceptible and resistant to pyrethroids, and narrowed down the potential genetic culprits to members of a family of genes coding for enzymes known as cytochrome P450s. The P450s are common to all classes of organisms, and are considered a first line of defense against toxins.

The researchers found two cytochrome P450 genes in An. funestus that are associated with pyrethroid resistance. Dr. Hilary Ranson of the Liverpool School of Tropical Medicine, a co-author of the study, explained that what makes this finding remarkable is that this particular type of cytochrome P450s were also recently implicated in pyrethroid resistance in Anopheles gambiae, the other major malaria-carrying mosquito in Africa. "If the enzymes responsible for resistance are very similar in both species, there is a much greater incentive to invest efforts in identifying specific enzyme inhibitors with the knowledge that they will likely be effective at overcoming resistance in both major malaria vectors," said Ranson. Furthermore, Ranson noted it is critical that these mosquito P450 genes do not have close relatives in the human genome, meaning that targets developed against these mosquitoes should have low risk for toxicity in humans.

This report of genetic markers that can be used to predict insecticide resistance in laboratory populations of An. funestus may be a landmark finding in malaria prevention when applied to the evaluation of wild mosquito populations. "Routine use of these molecular markers for resistance will provide early warning of future control problems due to insecticide resistance and should greatly enhance our ability to mitigate the potentially devastating effects of resistance on malaria control," said Ranson.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>