Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser makes sure food is fresh

20.10.2011
Minced meat, bread, fruit juice and many other foods are packaged in a protective gas which extends their shelf life.

There is currently no good method to check whether the packaging has the correct gas content. However, researchers in Atomic Physics and Packaging Logistics have developed a new laser instrument which could solve the problem. The first product is expected to be ready for market launch later in the autumn.

“It will be the first non-destructive method. This means that measurements can be taken in closed packaging and the gas composition over time can be checked. This will make it possible to check a much higher number of products than at present”, says Märta Lewander, Doctor of Atomic Physics at Lund University in Sweden.

Dr Lewander developed the technique in her thesis and now works as chief technical officer for the company Gasporox, which is commercialising the technology.

Today, spot checks are performed on individual samples, with the risk that damaged products could slip through.

“We hope that, in the long term, this type of equipment could also help to stop people throwing so much food away, because they would know that it is packaged as it should be”, she says.

The product that will be launched in the autumn could be used to check and improve how airtight packaging is. Gasporox estimates that within two years the method could also be used as a means of quality control in production when products are packaged. In the future, shops could also use it to check the shelf life of their goods.

No plastic packaging is 100% airtight. How easily oxygen can enter depends on both the material and how well sealed the packaging is.

“It has been shown that part-baked bread, for example, doesn’t always meet the mark”, says Annika Olsson, Professor of Packaging Logistics at Lund University.

The technology can measure through almost all packaging materials.

“As long as light can pass through then we can measure. Almost all materials allow at least some light to pass. Even packaging that contains aluminium foil, for example some fruit juice cartons, often has some part that is not covered by the foil”, says Märta Lewander.

At Lund University, research in the field is continuing. Patrik Lundin, a doctoral student in Atomic Physics, is now focusing on measuring carbon dioxide in packaging.

“It is important to measure both oxygen and carbon dioxide. Oxygen is most important, but there is also interest in carbon dioxide from the industry”, says Märta Lewander.

The development work has been financed by several research grants from bodies including Vinnova and by private entrepreneurs and investors. The product that is being developed by Gasporox is manufactured by a part-owner of the company, the Norwegian company Norsk Elektro Optikk.

How the technology works:

The protective atmosphere that surrounds the food product in the packaging usually comprises carbon dioxide or nitrogen and contains little or no oxygen. Oxygen leads to oxidisation, bacteria growth and decay. By shining a laser beam into the packaging and studying the light that comes back, it is possible to see if the composition of the gas is correct. The laser beam measures the amount of oxygen.

The laser is connected to a handheld unit which is held against the sample. A handheld detector measures the light that comes out of the packaging and sends a signal to a computer.

The technology is based on a technique for measuring the gas composition of samples containing cavities. An early application was to diagnose sinusitis, by enabling doctors at a primary health centre to find out whether the sinuses were full of gas as they should be. Clinical studies have confirmed that the technique works, and this application is expected to be on the market within a year or two.

Background:
The idea of using lasers to measure food packaging came about by chance, when Sune Svanberg, Professor of Atomic Physics at Lund University and the father of this laser technology, met Annika Olsson, then a Reader in Packaging Logistics, on a management course at Lund University a few years ago. When they told one another what they worked with, they began to brainstorm possible areas of collaboration. At the time, there was a fierce debate going on in Sweden on the repackaging of minced meat by a major supermarket chain.

For more information, see www.gasporox.com or contact CTO Märta Lewander, +46 702 951113, ml@gasporox.se, or CEO Maria Göth mg@gasporox.se, +46 702 954596.

High resolution photographs of Märta Lewander, Patrik Lundin and Annika Olsson are available in the Lund University image bank, http://bildweb.srv.lu.se/.

Megan Grindlay | idw
Further information:
http://bildweb.srv.lu.se/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>