Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser makes sure food is fresh

20.10.2011
Minced meat, bread, fruit juice and many other foods are packaged in a protective gas which extends their shelf life.

There is currently no good method to check whether the packaging has the correct gas content. However, researchers in Atomic Physics and Packaging Logistics have developed a new laser instrument which could solve the problem. The first product is expected to be ready for market launch later in the autumn.

“It will be the first non-destructive method. This means that measurements can be taken in closed packaging and the gas composition over time can be checked. This will make it possible to check a much higher number of products than at present”, says Märta Lewander, Doctor of Atomic Physics at Lund University in Sweden.

Dr Lewander developed the technique in her thesis and now works as chief technical officer for the company Gasporox, which is commercialising the technology.

Today, spot checks are performed on individual samples, with the risk that damaged products could slip through.

“We hope that, in the long term, this type of equipment could also help to stop people throwing so much food away, because they would know that it is packaged as it should be”, she says.

The product that will be launched in the autumn could be used to check and improve how airtight packaging is. Gasporox estimates that within two years the method could also be used as a means of quality control in production when products are packaged. In the future, shops could also use it to check the shelf life of their goods.

No plastic packaging is 100% airtight. How easily oxygen can enter depends on both the material and how well sealed the packaging is.

“It has been shown that part-baked bread, for example, doesn’t always meet the mark”, says Annika Olsson, Professor of Packaging Logistics at Lund University.

The technology can measure through almost all packaging materials.

“As long as light can pass through then we can measure. Almost all materials allow at least some light to pass. Even packaging that contains aluminium foil, for example some fruit juice cartons, often has some part that is not covered by the foil”, says Märta Lewander.

At Lund University, research in the field is continuing. Patrik Lundin, a doctoral student in Atomic Physics, is now focusing on measuring carbon dioxide in packaging.

“It is important to measure both oxygen and carbon dioxide. Oxygen is most important, but there is also interest in carbon dioxide from the industry”, says Märta Lewander.

The development work has been financed by several research grants from bodies including Vinnova and by private entrepreneurs and investors. The product that is being developed by Gasporox is manufactured by a part-owner of the company, the Norwegian company Norsk Elektro Optikk.

How the technology works:

The protective atmosphere that surrounds the food product in the packaging usually comprises carbon dioxide or nitrogen and contains little or no oxygen. Oxygen leads to oxidisation, bacteria growth and decay. By shining a laser beam into the packaging and studying the light that comes back, it is possible to see if the composition of the gas is correct. The laser beam measures the amount of oxygen.

The laser is connected to a handheld unit which is held against the sample. A handheld detector measures the light that comes out of the packaging and sends a signal to a computer.

The technology is based on a technique for measuring the gas composition of samples containing cavities. An early application was to diagnose sinusitis, by enabling doctors at a primary health centre to find out whether the sinuses were full of gas as they should be. Clinical studies have confirmed that the technique works, and this application is expected to be on the market within a year or two.

Background:
The idea of using lasers to measure food packaging came about by chance, when Sune Svanberg, Professor of Atomic Physics at Lund University and the father of this laser technology, met Annika Olsson, then a Reader in Packaging Logistics, on a management course at Lund University a few years ago. When they told one another what they worked with, they began to brainstorm possible areas of collaboration. At the time, there was a fierce debate going on in Sweden on the repackaging of minced meat by a major supermarket chain.

For more information, see www.gasporox.com or contact CTO Märta Lewander, +46 702 951113, ml@gasporox.se, or CEO Maria Göth mg@gasporox.se, +46 702 954596.

High resolution photographs of Märta Lewander, Patrik Lundin and Annika Olsson are available in the Lund University image bank, http://bildweb.srv.lu.se/.

Megan Grindlay | idw
Further information:
http://bildweb.srv.lu.se/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>