Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La Jolla Institute unlocks mystery of potentially fatal reaction to smallpox vaccine

27.05.2009
Research team is part of NIH network working toward new smallpox vaccine for eczema sufferers

Researchers from the La Jolla Institute for Allergy & Immunology have pinpointed the cellular defect that increases the likelihood, among eczema sufferers, of developing eczema vaccinatum, a severe and potentially fatal reaction to the smallpox vaccine.

The research, conducted in mouse models, was funded under a special research network created by the National Institutes of Health in 2004. The network is working toward the development of a new smallpox vaccine that could be administered to the millions of Americans who suffer from atopic dermatitis, a chronic, itchy skin condition commonly referred to as eczema.

The La Jolla Institute's Toshiaki and Yuko Kawakami, M.D.s, Ph.D.s., a husband and wife scientific team, led the research group which found that activity levels of Natural Killer (NK) cells played a pivotal role in the development of eczema vaccinatum in the mice. The activity of the NK cells, which are disease fighting cells of the immune system, was significantly lower in the mice that developed eczema vaccinatum than in normal mice that also received the smallpox vaccine. This knowledge opens the door to one day developing therapies that could potentially boost NK cell activity in eczema sufferers.

"Since atopic dermatitis affects as many as 17 percent of children in the U. S. and since eczema vaccinatum carries a fatality rate of 5-10 percent, therapies that prevent or treat eczema vaccinatum successfully are crucial should the need for mass vaccination against smallpox arise in response to bioterrorism," said Harvard pediatrics professor Raif S. Geha, M.D., chief of immunology at Boston Children's Hospital and a principal investigator in the NIH funded network investigating eczema vaccinatum. "The discovery of the Kawakami team, who are participants in the NIH network, is an important step towards this goal."

People with active atopic dermatitis (eczema), or who have outgrown atopic dermatitis, and the people they live with currently cannot receive smallpox vaccinations because of the risk of eczema vaccinatum. While uncommon, eczema vaccinatum can develop when atopic dermatitis patients are given the smallpox vaccine or come into close personal contact with people who recently received the vaccine. It is estimated that a significant portion of the U.S. population is currently not eligible for smallpox vaccination.

"This discovery answers an important question that has long eluded the scientific community, "why people with atopic dermatitis were susceptible to developing eczema vaccinatum upon receiving the smallpox vaccine, while the general population was not," said Mitchell Kronenberg, the La Jolla Institute's president & scientific director. "It marks a significant advance toward the goal of ensuring that everyone can one day be protected against the smallpox virus."

The finding was published today in the online version of the Journal of Experimental Medicine in a paper entitled, "Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum." La Jolla Institute scientist Shane Crotty, Ph.D., also contributed to the study.

Regarded as the deadliest disease ever known to man, smallpox was officially eradicated worldwide in 1980 and routine vaccinations against the disease ended in the U.S in 1972. However, bioterrorism concerns have arisen over recent years regarding the deliberate distribution of the smallpox virus, which might make smallpox vaccinations once again necessary. Such concerns led to the creation of the Atopic Dermatitis and Vaccinia Network (ADVN), a consortium of medical and research institutions nationwide developed by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. The network, which provided grant funding for the Kawakami's studies under NIH contact N01-AI40030C, was launched in 2004 with the goal of developing a new smallpox vaccine that would be safe for atopic dermatitis sufferers. It includes three consortiums, involving data, clinical testing and animal studies, of which Drs. Kawakami and the La Jolla Institute are members.

The Animal Studies Consortium was created to establish animal models of atopic dermatitis and investigate their immune responses to vaccinia — the virus used in smallpox vaccine. Drs. Kawakami were invited to join the consortium due to their creation of a new, more effective atopic dermatitis mouse model in 2004.

In their study, Drs. Kawakami showed that eczema-infected mice had higher levels of IL-17 cells, which are known to inhibit NK cell activity. "This higher level of IL-17 cells slowed down the ability of the NK cells to kill the vaccinia virus," said Yuko Kawakami, noting people with atopic dermatitis are also known to have higher numbers of IL-17 producing cells. "This led to the development of eczema vaccinatum when these mice received the smallpox vaccine."

Drs. Kawakami tested their theory by stimulating more NK cell activity in the eczema-infected mice. The higher activity led to the elimination of the eczema vaccinatum infection. "We are very excited by these findings, " said Toshiaki Kawakami. "Developing a safer smallpox vaccine is the most important thing in this field."

About La Jolla Institute

Founded in 1988, the La Jolla Institute for Allergy & Immunology is a nonprofit medical research center dedicated to increasing knowledge and improving human health through studies of the immune system. Scientists at the institute carry out research searching for cures for cancer, allergy and asthma, infectious diseases, and autoimmune diseases such as diabetes, inflammatory bowel disease and arthritis. La Jolla Institute's research staff includes more than 100 Ph.Ds and M.D.s.

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>