Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


International consortium, including Hebrew University scientist, ‘decodes’ the tomato genome

The tomato genome sequence – both the domesticated type and its wild ancestor, Solanum pimpinellifolium -- has been sequenced for the first time by a large international team of scientists, including a researcher from the Hebrew University of Jerusalem.

The achievement – an important tool for further development of better tomato production -- by the 300-plus-memberTomato Genome Consortium (TGC) is reported on in the May 31 issue of the journal Nature.

The consortium includes Prof. Dani Zamir of the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University. Other scientists in the project are from Argentina, Belgium, China, France, Germany, India, Italy, Japan, South Korea, Spain, the Netherlands, the United Kingdom and the United States.

When Columbus brought tomato seed from America to the old world some 500 years ago, he probably never imagined that it would be such a major contributor to human nutrition, health, culinary pleasure and international cooperation.

This latest quantum leap in knowledge of the tomato genetic code (35,000 genes) provides a means to match DNA sequences with specific traits that are important for human well being or taste, such as flavor, aroma, color and yield.

Beyond improvement of the tomato, the genome sequence also provides a framework for studying closely related plants, such as potato, pepper, petunia and even coffee. These species all have very similar sets of genes, yet they look very different.

How can a similar set of “genetic blueprints” empower diverse plants with different adaptations, characteristics and economic products? This challenging question is being explored by comparing biodiversity and traits of tomato and its relatives.

The Tomato Genome Consortium started its work in 2003, when scientists analyzed the DNA sequence of tomato using the most modern equipment available at the time. Fortunately, with the recent introduction of so-called “next generation sequencing” technologies, the speed of data output increased 500-fold and enabled the project to move on efficiently to its conclusion.


Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016

Jerry Barach | Hebrew University
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>