Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International consortium, including Hebrew University scientist, ‘decodes’ the tomato genome

31.05.2012
The tomato genome sequence – both the domesticated type and its wild ancestor, Solanum pimpinellifolium -- has been sequenced for the first time by a large international team of scientists, including a researcher from the Hebrew University of Jerusalem.

The achievement – an important tool for further development of better tomato production -- by the 300-plus-memberTomato Genome Consortium (TGC) is reported on in the May 31 issue of the journal Nature.

The consortium includes Prof. Dani Zamir of the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University. Other scientists in the project are from Argentina, Belgium, China, France, Germany, India, Italy, Japan, South Korea, Spain, the Netherlands, the United Kingdom and the United States.

When Columbus brought tomato seed from America to the old world some 500 years ago, he probably never imagined that it would be such a major contributor to human nutrition, health, culinary pleasure and international cooperation.

This latest quantum leap in knowledge of the tomato genetic code (35,000 genes) provides a means to match DNA sequences with specific traits that are important for human well being or taste, such as flavor, aroma, color and yield.

Beyond improvement of the tomato, the genome sequence also provides a framework for studying closely related plants, such as potato, pepper, petunia and even coffee. These species all have very similar sets of genes, yet they look very different.

How can a similar set of “genetic blueprints” empower diverse plants with different adaptations, characteristics and economic products? This challenging question is being explored by comparing biodiversity and traits of tomato and its relatives.

The Tomato Genome Consortium started its work in 2003, when scientists analyzed the DNA sequence of tomato using the most modern equipment available at the time. Fortunately, with the recent introduction of so-called “next generation sequencing” technologies, the speed of data output increased 500-fold and enabled the project to move on efficiently to its conclusion.

CONTACT:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>