Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by a Breakwater

18.12.2012
Highly efficient electrocatalyst for the reduction of oxygen in fuel cells and batteries

Be it a battery or a fuel cell, efficient electrodes are the be-all and end-all of every electrochemical cell. In the journal Angewandte Chemie, a team of Korean and American scientists has now introduced a novel material for electrodes based on affordable melamine foam and carbon black.



The high porosity significantly facilitates fast mass transport and a high number of catalytically active centers drastically increase the oxygen-reducing activity of cathodes for fuel cells and metal-air batteries.

The reaction that occurs at the cathodes of fuel cells and metal-air batteries is the electrochemical reduction of oxygen, namely the oxygen reduction reaction (ORR). This reaction is considerably inhibited because of its sluggish rate, and the efficiency of the cells is lower than it could be. The catalytic cathode must ensure that oxygen reacts with water, taking up electrons to form OH- ions in alkaline solution. The problem is that in a complex system involving solid, liquid, and gaseous reactants, transport processes are often too slow and inhibit the process, especially when discharging with higher current densities.

Cathodes made of a porous carbon support (carbon black) on which a catalytically active metal like platinum is finely dispersed can very effectively minimize this kinetic inhibition. However, they are expensive and not very stable, thus making them impractical for widespread application. A team led by Jaephil Cho at the Ulsan National Institute of Science and Technology (Korea) and Meilin Liu at the Georgia Institute of Technology (USA) thus aimed to develop a more economical alternative.

They were inspired by the tetrapod structure (Greek tetra: four, podes: feet) of breakwaters to synthesize a new highly efficient electrocatalyst. Tetrapods, whose four “feet” are pointed toward the corners of an imaginary tetrahedron, are constructed at the coast as well as near dams and piers to reduce the force of waves crashing against the shore. These structures also provide sanctuary for marine life forms in their many large cavities. When melamine foam is pyrolyzed and ground with a mortar and pestle, it forms microscopic fragments resembling tetrapods.

The scientists treated melamine foam with iron chloride and nitrogen-doped ketjenblack (conducting pellets of carbon black). They carbonized this product and extracted it with sulfuric acid. The resulting nanotetrapods studded with nanoparticles of carbon black have a very high specific surface area, a large number of catalytically active centers (Fe/Fe3C, and CN groups), and many pores that allow for rapid mass transport. Cathodes made of this new electrode material are highly durable and excellent performance, comparable to those of metal-based cathodes – at a much lower price. These may represent a highly promising starting point for a new generation of inexpensive and highly efficient metal-air batteries and fuel cells.

About the Author
Jaephil Cho is Professor and Dean at the Interdisciplinary School of Green Energy at UNIST (South Korea). He is Director of the Converging Research Center for Innovative Battery Technologies and of the IT Research Center (both supported by the Korean government). His current research is focused mainly on metal–air batteries and nanostructured electroactive materials for lithium-ion batteries.
Author: Jaephil Cho, Ulsan National Institute of Science and Technology (Rep. Korea), http://jpcho.com/
Title: A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: N-Doped Ketjenblack Incorporated into Fe/Fe3C-Functionalized Melamine Foam

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201207193

Jaephil Cho | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>