Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside the First Bird, Surprising Signs of a Dinosaur

12.10.2009
The raptor-like Archaeopteryx has long been viewed as the archetypal first bird, but new research reveals that it was actually a lot less “bird-like” than scientists had believed.

In fact, the landmark study led by paleobiologist Gregory M. Erickson of The Florida State University has upended the iconic first-known-bird image of Archaeopteryx (from the Greek for “ancient wing”), which lived 150 million years ago during the Late Jurassic period in what is now Germany. Instead, the animal has been recast as more of a feathered dinosaur -- bird on the outside, dinosaur on the inside.

That’s because new, microscopic images of the ancient cells and blood vessels inside the bones of the winged, feathered, claw-handed creature show unexpectedly slow growth and maturation that took years, similar to that found in dinosaurs, from which birds evolved. In contrast, living birds grow rapidly and mature in a matter of weeks.

Also groundbreaking is the finding that the rapid bone growth common to all living birds but surprisingly absent from the Archaeopteryx was not necessary for avian dinosaur flight.

The study is published in the Oct. 9, 2009, issue of the journal PLoS One. In addition to Erickson, an associate professor in Florida State’s Department of Biological Science and a research associate at the American Museum of Natural History, co-authors include Florida State University biologist Brian D. Inouye and other U.S. scientists, as well as researchers from Germany and China.

“Living birds mature very quickly,” Erickson said. “That’s why we rarely see baby birds among flocks of invariably identical-size pigeons. Slow-growing animals such as Archaeopteryx would look foreign to contemporary bird-watchers.”

Erickson said evidence already confirms that birds are, in fact, dinosaurs. “But just how dinosaur-like -- or even bird-like -- was the first bird?” he asked. “Almost nothing had been known of Archaeopteryx biology. There has been debate as to how well it flew, if at all. Some have suggested that early bird physiology may have been very different from living birds, but no one had tested fossils that were close to the base of bird ancestry.”

Fossilized remains of Archaeopteryx were found in Germany in 1860, one year after Charles Darwin’s “Origin of Species” was published. With its combination of bird-like features, including feathers and a wishbone, and reptilian ones -- teeth, three-fingered hands, a long bony tail -- the skeleton made evolutionary theory more credible. The 1860s evolutionist Thomas Henry Huxley saw the Archaeopteryx as a perfect transition between birds and reptiles. Erickson calls it “the poster child for evolution.”

“For our study, which required tremendous collaboration, we set out to determine how Archaeopteryx grew and compare its growth to living birds, closely related non-avian dinosaurs, and other early birds that came after it,” Erickson said. “I went to Munich with my colleague Mark Norell from the American Museum of Natural History, and we met with Oliver Rauhut, curator of the Bavarian State Collection for Palaeontology and Geology, which houses a small juvenile Archaeopteryx that is one of 10 specimens discovered to date. From that specimen, we extracted tiny bone chips and then examined them microscopically.”

Surprisingly, the bones of the juvenile Archaeopteryx were not the highly vascularized, fast-growing type, as in other avian dinosaurs. Instead, Erickson found lizard-like, dense, nearly avascular bone.

“It led us to ask, ‘Did Archaeopteryx grow in a unique way?’” he said.

To explain the strange bone type, the researchers also examined different-size species of dinosaurs that were close relatives of Archaeopteryx, including Deinonychosaurs, the raptors of “Jurassic Park” fame. They then looked to colleagues in China for specimens of two of the earliest birds: Jeholornis prima, a long-tailed creature, and the short-tailed Sapeornis chaochengensi, which had three fingers and teeth.

“In the smallest dinosaur specimens, and in an early bird, we found the same bone type as in the juvenile Archaopteryx specimen,” Erickson said.

Next, the research team plugged bone formation rates into the sizes of the Archaeopteryx femora (thigh bones) to predict its rate of growth.

“We learned that the adult would have been raven-sized and taken about 970 days to mature,” Erickson said. “Some same-size birds today can do likewise in eight or nine weeks. In contrast, maximal growth rates for Archaeopteryx resemble dinosaur rates, which are three times slower than living birds and four times faster than living reptiles.

“From these findings, we see that the physiological and metabolic transition into true birds occurred millions of years after Archaeopteryx,” he said. “But, perhaps equally important, we’ve shown that avians were able to fly even with dinosaur physiology.”

Inouye added, “Our data on dinosaur growth rates and survivorship are bringing modern physiology and population biology to a field that has historically focused more on finding and naming fossil species.”

Funding for the study came from the National Science Foundation (NSF); Germany’s Deutsche Forschungsgemeinschaft (DFG); and The Major Basic Research Projects of the Ministry of Science and Technology of China.

In addition to Gregory Erickson (first author) and Brian Inouye of Florida State University’s Department of Biological Science in Tallahassee, Fla., co-authors of the PLoS One paper (“Was dinosaurian physiology inherited by birds? – Reconciling slow growth in Archaeopteryx”) are Oliver W. M. Rauhut, Bavarian State Collection for Palaeontology and Geology, LMU Munich, Munich, Germany; Zhonghe Zhou, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; Alan Turner, Department of Anatomical Sciences, Stony Brook University, Stony Brook, N.Y.; Dongyu Hu, Paleontological Institute, Shenyang Normal University, Shenyang, China; and Mark Norell, Division of Paleontology, American Museum of Natural History, New York, N.Y.

CONTACT:
Greg Erickson, (850) 645-4991 or (850) 345-8487;
gerickson@bio.fsu.edu

Greg Erickson | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>