Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene acts as a brake on breast cancer progression

30.11.2011
Newly published research explores the role of 14-3-3ó in tumour suppression

New research out of McGill University's Goodman Cancer Research Centre provides compelling new evidence that a gene known as 14-3-3ó plays a critical role in halting breast cancer initiation and progression. The study, led by the Dept. of Biochemistry's William J. Muller, will be published online today in the journal Cancer Discovery.

The discovery of this new target points to novel therapies that eventually could slow or stop breast cancer progression. Muller also says that this gene is likely a major player in a number of other types of cancer.

Based on past clinical observations revealing that the expression of gene 14-3-3ó is silenced in a large percentage of breast cancers, researchers had long suspected that it played a role in stopping cancer cells from dividing. The McGill team wanted to confirm whether this was the case. Using a transgenic mouse model that expresses ErbB2, an oncogene associated with aggressive breast cancers, they inactivated the 14-3-3ó gene in the mammary gland.

"We found that the loss of this expression did, in fact, result in a dramatic acceleration of tumour onset," explained Muller who is also affiliated with the Research Institute of the McGill University Health Centre (RI MUHC). "The two genes, 14-3-3ó and ErbB2, co-operate, with 14-3-3ó being the brakes. If you lose the brakes, ErbB2 can induce the cells to divide indefinitely. Furthermore, not only is the ability of these cells to divide enhanced but they become extraordinarily metastatic. They can invade distant sites."

Co-authors include Chen Ling, Vi-Minh-Tri Su and Dongmei Zuo. All are from the Goodman Cancer Research Centre and McGill's Faculty of Medicine in the Dept. of Biochemistry. All authors were supported by grants from the Canadian Institutes of Health Research (CIHR) and the Terry Fox Foundation.

"We are pleased that our funding has led to a better understanding of molecular mechanisms of breast cancer development, which ultimately will lead to improved interventions for breast cancer patients " said Dr. Morag Park, the Scientific Director of the CIHR, Institute of Cancer.

The paper, Loss of the 14-3-3ó tumour suppressor is a critical event in ErbB2-mediated tumour progression, may be found here: http://cancerdiscovery.aacrjournals.org/content/early/2011/11/10/2159-8290.CD-11-0189.abstract


Contact:
Allison Flynn,
McGill Media Relations
-
Tel.: 514-398-7698

Allison Flynn | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>