Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

G protein-coupled receptor mediates the action of castor oil

22.05.2012
Action mechanism of one of the oldest drugs known to man elucidated
Castor oil is known primarily as an effective laxative; however, it was also used in ancient times with pregnant women to induce labour. Only now have scientists at the Max Planck Institute for Heart and Lung Research succeeded in unravelling the mysteries of the action mechanism. A receptor by the name of EP3 on the cells of the intestine and uterus is apparently responsible. This is activated by an ingredient in the oil.

The oil obtained from the seeds of the castor oil plant Ricinus communis is one of the oldest drugs known to man. The first mention of it as a laxative can be found in 3500-year-old Ancient Egyptian papyrus scrolls. Castor oil was also used for medical purposes in Greek and Roman times. And for many centuries, it has also been used to induce labour. Yet despite being used worldwide in conventional and folk medicine, until now it has not been clear how castor oil’s laxative and labour-inducing effects actually work.

Scientists working with Stefan Offermanns and Sorin Tunaru at the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now revealed the long-held secret: “It has been known for many years that a certain ingredient, namely ricinoleic acid released from the oil in the intestine, is responsible for the effect. However, until now it was assumed that this acted via a local irritation of the intestinal mucosa. We have now been able to show that it is actually a pharmacological effect”, said Sorin Tunaru who headed the research project.

The focus of Stefan Offermanns’ department is the so-called G protein-coupled receptors, a large group of receptors in the body involved primarily in transmitting signals in cells. Sorin Tunaru had initially found effects that are characteristic of these receptors in an experiment with ricinoleic acid on various cell cultures. Following this, the researchers at Bad Nauheim began a more detailed investigation. Hundreds of receptors were systematically turned off, and then the reaction of the cells to ricinoleic acid tested. Ultimately, they succeeded in identifying the key receptor with the name EP3.

“Experiments with mice in which the EP3 receptor had previously been specifically turned off by a genetic operation provided us with convincing proof”, explains Sorin Tunaru. “Unlike their genetically unchanged fellow species, after being given castor oil or even just ricinoleic acid, the mice without the EP3 receptor exhibited no increased defecation.” And in pregnant animals, no increased labour was found, which suggests that in both cases the EP3 receptor is responsible.

The Max Planck scientists concluded from this that after being released from the castor oil, the ricinoleic acid is first of all absorbed by the body via the intestinal mucosa; the EP3 receptor then becomes active on the muscle cells of the intestine and uterus, which in turn stimulates intestinal activity and labour.

In Stefan Offermanns’ opinion, the light shed on the action mechanism of this old drug could lead to a reassessment of its clinical use. “Castor oil is still widely used in alternative and folk medicine. However, in conventional medicine it has been decreasingly propagated in the last few decades, not least because the action mechanism was unclear. The results of our study could be a factor in this changing again.”

There is also the hope that for the synthetic active ingredients already used today new areas of application will open up. For example, today, substances are also used which we have identified for the ricinoleic acid that activate the responsible receptor to increase labour. It is conceivable that mild-action drugs could be developed from these substances to cleanse the intestine or promote intestinal activity. At any rate, however, one thing is certain for the scientists: many of the natural remedies used in medicine ultimately develop their action via specific, molecularly-defined mechanisms just like synthetically produced medicines.

The flower of the castor oil plant Ricinus communis. Scientists at the Max Planck Institute for Heart and Lung Research have now unravelled the mysteries of the action mechanism of what is regarded as one of the oldest drugs known to man.
© Richard Drew / Dreamstime.com

Contact

Prof. Dr. Stefan Offermanns
Max Planck Institute for Heart and Lung Research
Phone: +49 6032 705-1202
Fax: +49 6032 705-1204
Email: stefan.offermanns@­mpi-bn.mpg.de
Dr. sc. hum. Sorin Tunaru
Max Planck Institute for Heart and Lung Research
Phone: +49 6032 705-1210
Email: sorin.tunaru@­mpi-bn.mpg.de
Dr. Matthias Heil
Max Planck Institute for Heart and Lung Research
Phone: +49 6032 705-1705
Fax: +49 6032 705-1704
Email: matthias.heil@­mpi-bn.mpg.de
Original publication
Sorin Tunaru, Till F. Althoff, Rolf M. Nüsing, Martin Diener & Stefan Offermanns
Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin E 3 receptors

PNAS, May 22, 2012, doi/10.1073/pnas.1201627109

Prof. Dr. Stefan Offermanns | Max-Planck-Institut
Further information:
http://www.mpg.de/5808639/receptor_castor_oil

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>