Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow Your Nose: Odor code for food is based on a few volatile substances

25.06.2014

The actual flavor of a food is experienced through our sense of smell rather than with our tongue.

However, of the large number of volatile compounds in foods, only about 230 are involved in the scent, as reported by German scientists in the journal Angewandte Chemie. The different smells derive from characteristic combinations of three to forty of these odorants.

When we eat or drink, volatile substances pass through our mouth to our roughly 30 million olfactory cells. Special receptors bind to the odor molecules, resulting in an electrical signal that is transmitted to the brain. When we smell a mixture of several chemical components, multiple types of olfactory cells are activated. The nerve cells in the brain then produce a specific activation pattern in the form of a topographical “scent map”.

Thomas Hofmann and a team of scientists at the Technical University of Munich and the German Research Center for Food Chemistry (Leibniz Institute in Friesing-Weihenstephan) have now systematically combed through, analyzed, and statistically evaluated the available literature on odorants.

Their meta-analysis yielded an astonishing result: “Of the roughly 10,000 volatile compound that have so far been identified in foods, only about 230 act as genuine key odorants,” reports Hofmann, “and the typical scent of most if not all foods is produced by a characteristic ratio of only three to 40 of these compounds.” The scientists hypothesize that the natural odorant molecules in our food and our 400 or so odorant receptor proteins developed in concert through evolution.

The smell of a food is dependent on the right mixture of odorant molecules because combination results in entirely new smells. “For example, the combination of an odorant that smells of geraniums with one that smells of boiled potatoes generates the molecular basis for the fishy smell of boiled cod and sardines,” says Hofmann. “At a concentration ratio of 1:100, they lose their original odor character in favor of the fishy smell.”

Decoding all of the relevant odorants and olfactory receptors opens up interesting new possibilities for the production of biomimetic odor mixtures that could be used to authentically reconstruct natural odor signatures for food flavorings, perfumes, or olfactory accompaniment in movies, as well as in biomedical applications like the regulation of appetite and satiation.

Feelings of ravenous hunger could thus be suppressed with flavors that have the authentic odor profile of high-calorie foods. Knowing the odor code for crops and fruits could also be helpful in farming. Instead of breeding crops solely based on storage life – often at the cost of flavor – it should be possible to breed more flavorful varieties. Artificial noses based on biosensors could control food production or be useful in diagnostics.

About the Author

Prof. Hofmann is the Chair of Food Chemistry and Molecular Sensors at the Technische Universität München (TUM) and researches the chemistry and physiology of sensorically active biomolecules. Since 2009 he has been the Acting Vice President for Research and Innovation at TUM.

Author: Thomas Hofmann, Technische Universität München (Germany), http://www.molekulare-sensorik.de/

Title: Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309508

Thomas Hofmann | Angewandte Chemie

Further reports about: characteristic combination crops mixture odor odorant olfactory smell substances volatile

More articles from Life Sciences:

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Stroke: news about platelets
03.08.2015 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>