Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow Your Nose: Odor code for food is based on a few volatile substances

25.06.2014

The actual flavor of a food is experienced through our sense of smell rather than with our tongue.

However, of the large number of volatile compounds in foods, only about 230 are involved in the scent, as reported by German scientists in the journal Angewandte Chemie. The different smells derive from characteristic combinations of three to forty of these odorants.

When we eat or drink, volatile substances pass through our mouth to our roughly 30 million olfactory cells. Special receptors bind to the odor molecules, resulting in an electrical signal that is transmitted to the brain. When we smell a mixture of several chemical components, multiple types of olfactory cells are activated. The nerve cells in the brain then produce a specific activation pattern in the form of a topographical “scent map”.

Thomas Hofmann and a team of scientists at the Technical University of Munich and the German Research Center for Food Chemistry (Leibniz Institute in Friesing-Weihenstephan) have now systematically combed through, analyzed, and statistically evaluated the available literature on odorants.

Their meta-analysis yielded an astonishing result: “Of the roughly 10,000 volatile compound that have so far been identified in foods, only about 230 act as genuine key odorants,” reports Hofmann, “and the typical scent of most if not all foods is produced by a characteristic ratio of only three to 40 of these compounds.” The scientists hypothesize that the natural odorant molecules in our food and our 400 or so odorant receptor proteins developed in concert through evolution.

The smell of a food is dependent on the right mixture of odorant molecules because combination results in entirely new smells. “For example, the combination of an odorant that smells of geraniums with one that smells of boiled potatoes generates the molecular basis for the fishy smell of boiled cod and sardines,” says Hofmann. “At a concentration ratio of 1:100, they lose their original odor character in favor of the fishy smell.”

Decoding all of the relevant odorants and olfactory receptors opens up interesting new possibilities for the production of biomimetic odor mixtures that could be used to authentically reconstruct natural odor signatures for food flavorings, perfumes, or olfactory accompaniment in movies, as well as in biomedical applications like the regulation of appetite and satiation.

Feelings of ravenous hunger could thus be suppressed with flavors that have the authentic odor profile of high-calorie foods. Knowing the odor code for crops and fruits could also be helpful in farming. Instead of breeding crops solely based on storage life – often at the cost of flavor – it should be possible to breed more flavorful varieties. Artificial noses based on biosensors could control food production or be useful in diagnostics.

About the Author

Prof. Hofmann is the Chair of Food Chemistry and Molecular Sensors at the Technische Universität München (TUM) and researches the chemistry and physiology of sensorically active biomolecules. Since 2009 he has been the Acting Vice President for Research and Innovation at TUM.

Author: Thomas Hofmann, Technische Universität München (Germany), http://www.molekulare-sensorik.de/

Title: Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309508

Thomas Hofmann | Angewandte Chemie

Further reports about: characteristic combination crops mixture odor odorant olfactory smell substances volatile

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>