Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow Your Nose: Odor code for food is based on a few volatile substances

25.06.2014

The actual flavor of a food is experienced through our sense of smell rather than with our tongue.

However, of the large number of volatile compounds in foods, only about 230 are involved in the scent, as reported by German scientists in the journal Angewandte Chemie. The different smells derive from characteristic combinations of three to forty of these odorants.

When we eat or drink, volatile substances pass through our mouth to our roughly 30 million olfactory cells. Special receptors bind to the odor molecules, resulting in an electrical signal that is transmitted to the brain. When we smell a mixture of several chemical components, multiple types of olfactory cells are activated. The nerve cells in the brain then produce a specific activation pattern in the form of a topographical “scent map”.

Thomas Hofmann and a team of scientists at the Technical University of Munich and the German Research Center for Food Chemistry (Leibniz Institute in Friesing-Weihenstephan) have now systematically combed through, analyzed, and statistically evaluated the available literature on odorants.

Their meta-analysis yielded an astonishing result: “Of the roughly 10,000 volatile compound that have so far been identified in foods, only about 230 act as genuine key odorants,” reports Hofmann, “and the typical scent of most if not all foods is produced by a characteristic ratio of only three to 40 of these compounds.” The scientists hypothesize that the natural odorant molecules in our food and our 400 or so odorant receptor proteins developed in concert through evolution.

The smell of a food is dependent on the right mixture of odorant molecules because combination results in entirely new smells. “For example, the combination of an odorant that smells of geraniums with one that smells of boiled potatoes generates the molecular basis for the fishy smell of boiled cod and sardines,” says Hofmann. “At a concentration ratio of 1:100, they lose their original odor character in favor of the fishy smell.”

Decoding all of the relevant odorants and olfactory receptors opens up interesting new possibilities for the production of biomimetic odor mixtures that could be used to authentically reconstruct natural odor signatures for food flavorings, perfumes, or olfactory accompaniment in movies, as well as in biomedical applications like the regulation of appetite and satiation.

Feelings of ravenous hunger could thus be suppressed with flavors that have the authentic odor profile of high-calorie foods. Knowing the odor code for crops and fruits could also be helpful in farming. Instead of breeding crops solely based on storage life – often at the cost of flavor – it should be possible to breed more flavorful varieties. Artificial noses based on biosensors could control food production or be useful in diagnostics.

About the Author

Prof. Hofmann is the Chair of Food Chemistry and Molecular Sensors at the Technische Universität München (TUM) and researches the chemistry and physiology of sensorically active biomolecules. Since 2009 he has been the Acting Vice President for Research and Innovation at TUM.

Author: Thomas Hofmann, Technische Universität München (Germany), http://www.molekulare-sensorik.de/

Title: Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309508

Thomas Hofmann | Angewandte Chemie

Further reports about: characteristic combination crops mixture odor odorant olfactory smell substances volatile

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>