Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most extensive genetic resource for reef-building coral created

12.05.2009
A nearly complete collection of genes for a species of reef-building coral has been assembled by a team led by biologists from The University of Texas at Austin.

The scientists will use the genetic data to understand natural variations in corals from around the world and how they respond, at the genetic level, to rising water temperatures.

"One of the most important questions for coral biologists is whether it will be possible for corals to adapt to the warming oceans," says Eli Meyer, postdoctoral researcher in the Section of Integrative Biology. "Answering that question requires a detailed knowledge of the genes that corals use to respond to stress."

Meyer and Mikhail Matz, assistant professor of integrative biology, developed an improved method for sequencing all of the genes being used by an organism, known as the "transcriptome." Those genes, plus other non-expressed genes and DNA, together equal the organism's entire genome.

Their analysis revealed about 11,000 different genes in the widely studied Pacific coral, Acropora millepora.

Meyer and Matz published their findings in the journal BMC Genomics, but the gene sequences and markers were made public online directly following their availability.

Researchers from around the world have already begun to use the data. They are studying diverse aspects of coral biology such as response to stress, synchronization of mass spawning and relatedness of coral populations across the Pacific.

"I think this will facilitate an explosion in the science of coral adaptation and evolution," says Matz. "We developed a big boot to kick down a door leading to coral genomics."

Matz and Meyer say their method can be used to study the genes of any other organism that isn't yet common to genomic research.

"In about one month's time, you can now have almost a complete catalog of any organism's genes," says Matz.

Dr. Misha Matz | EurekAlert!
Further information:
http://www.utexas.edu
http://www.bio.utexas.edu/research/matz_lab/matzlab/454.html

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>