Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The evolution of gene regulation

27.05.2009
How microbial neighbors settle differences

Even microbes are governed by the principle of supply and demand – at least at the genetic level. Not all of their gene products, the blueprints for proteins, are required at all times. That means most of their genes only become active when they are needed, as is the case in higher organisms.

In the simplest case, a transcription factor will activate the gene in question at the right time. Genes that are regulated in a somewhat more complex manner, on the other hand, are kept inactive by a repressor that is removed only when the gene is needed. Which of these two regulation mechanisms will develop is a question of demand, along the lines of a "use-it-or-lose-it" principle: if genes are frequently active, then, as a rule, they will be directly induced.

Genes that encode more rarely used proteins, on the other hand, tend to be kept inactive by repressors. LMU physicist Ulrich Gerland and Professor Terence Hwa of the University of California have now demonstrated using computer simulations and theoretical analyses that another – indeed opposing – principle also comes into play: "wear-and-tear". According to this principle, direct activation can lead to harmful changes. "Which of the two principles prevails depends on evolutionary criteria such as the population size and the periods over which environmental changes take place," says Gerland. "Our study may serve as a useful basis for more detailed studies of the evolution of regulatory systems." (PNAS Early Edition, 22 Mai 2009)

Up until the middle of the 20th century, biochemists spent most of their efforts studying metabolism, i.e. obtaining energy from food. Less importance was given to the – technically inexplicable – question of how proteins were regulated as a response to internal and external signals. The biology of regulation only came into its own as an independent research field when technical progress opened the window to scientific analysis of DNA, the carrier of genetic traits, and to the synthesis of proteins, the most important functional elements of the cell. It quickly became clear that complex and diverse regulation mechanisms adapted the genetic activity of cells to internal and external conditions – even in microorganisms.

It is known, for example, that the intestinal bacterium Escherichia coli in the digestive tract of young mammals can break down lactose, the sugar abundant in mother's milk. To do this, the bacterium produces the enzyme lactase – but only if lactose is actually present. Most of the time, however, lactose is not present. At these times, the gene that encodes the lactase enzyme is blocked by a repressor. Only one key fits the lock to this protein, to detach the repressor from the lactase gene: a lactose molecule, as a single, unmistakable sign that this sugar is present and now available as food. Other genes, however, are regulated without the use of repressors: these genes are directly activated by a transcription factor that binds to them.

These are only two simple examples of mechanisms that regulate gene activity, and they are functionally equivalent. "The question was raised long ago as to whether nature's choice in favor of one of the two mechanisms is only random, or whether there are specific criteria," reports Gerland. "Studies have shown that the demand for a gene product is a decisive factor: it is mostly genes whose proteins are required most of the time that are directly activated. Proteins such as lactase, on the other hand, which are only used some of the time, tend to have genetic codes that are only released from their repressor when needed." The "use-it-or-lose-it" principle was proposed to explain this, which demands the frequent use of regulation factors because they would otherwise be subject to damaging effects.

Using computer simulations and theoretical calculations, Gerland and Hwa have now demonstrated that a second – even opposing – principle also comes into play: "wear-and-tear". Its name reflects the fact that constant use of regulators can also lead to detrimental consequences. The two researchers therefore investigated whether other factors that can affect the evolution of microorganisms play a role. "Our results clearly show that both principles are valid, even though they are actually contradictory," Gerland says. "In this conflict between maximal and minimal use of the regulators, other criteria do in fact come into play: the population size and the periods over which the environmental changes stretch."

Genetic regulation in small populations existing in an environment that only slowly changes is governed by the "use-it-or-lose-it" principle, with maximal use of the regulation proteins. In the opposite case, however, it is more "wear-and-tear" that comes into play with minimal use of the proteins. "The evolution of regulatory systems is still barely understood," reports Gerland. "So far, appropriate theoretical methods have also been largely lacking. But the time-dependent selection shown in our example may now prove to be an important factor in regulatory development. Many questions are still open, and our results will hopefully prompt further investigations."

Publication:
"Evolutionary selection between alternative modes of gene regulation",
Ulrich Gerland and Terence Hwa,
PNAS Early Edition, 22 May 2009
Contact:
Professor Ulrich Gerland
Tel.: 089 / 2180 – 4514
Fax: 089 / 2180 - 13545
E-mail: gerland@lmu.de

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de
http://www.physik.uni-muenchen.de/~gerland

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>