Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The evolution of gene regulation

27.05.2009
How microbial neighbors settle differences

Even microbes are governed by the principle of supply and demand – at least at the genetic level. Not all of their gene products, the blueprints for proteins, are required at all times. That means most of their genes only become active when they are needed, as is the case in higher organisms.

In the simplest case, a transcription factor will activate the gene in question at the right time. Genes that are regulated in a somewhat more complex manner, on the other hand, are kept inactive by a repressor that is removed only when the gene is needed. Which of these two regulation mechanisms will develop is a question of demand, along the lines of a "use-it-or-lose-it" principle: if genes are frequently active, then, as a rule, they will be directly induced.

Genes that encode more rarely used proteins, on the other hand, tend to be kept inactive by repressors. LMU physicist Ulrich Gerland and Professor Terence Hwa of the University of California have now demonstrated using computer simulations and theoretical analyses that another – indeed opposing – principle also comes into play: "wear-and-tear". According to this principle, direct activation can lead to harmful changes. "Which of the two principles prevails depends on evolutionary criteria such as the population size and the periods over which environmental changes take place," says Gerland. "Our study may serve as a useful basis for more detailed studies of the evolution of regulatory systems." (PNAS Early Edition, 22 Mai 2009)

Up until the middle of the 20th century, biochemists spent most of their efforts studying metabolism, i.e. obtaining energy from food. Less importance was given to the – technically inexplicable – question of how proteins were regulated as a response to internal and external signals. The biology of regulation only came into its own as an independent research field when technical progress opened the window to scientific analysis of DNA, the carrier of genetic traits, and to the synthesis of proteins, the most important functional elements of the cell. It quickly became clear that complex and diverse regulation mechanisms adapted the genetic activity of cells to internal and external conditions – even in microorganisms.

It is known, for example, that the intestinal bacterium Escherichia coli in the digestive tract of young mammals can break down lactose, the sugar abundant in mother's milk. To do this, the bacterium produces the enzyme lactase – but only if lactose is actually present. Most of the time, however, lactose is not present. At these times, the gene that encodes the lactase enzyme is blocked by a repressor. Only one key fits the lock to this protein, to detach the repressor from the lactase gene: a lactose molecule, as a single, unmistakable sign that this sugar is present and now available as food. Other genes, however, are regulated without the use of repressors: these genes are directly activated by a transcription factor that binds to them.

These are only two simple examples of mechanisms that regulate gene activity, and they are functionally equivalent. "The question was raised long ago as to whether nature's choice in favor of one of the two mechanisms is only random, or whether there are specific criteria," reports Gerland. "Studies have shown that the demand for a gene product is a decisive factor: it is mostly genes whose proteins are required most of the time that are directly activated. Proteins such as lactase, on the other hand, which are only used some of the time, tend to have genetic codes that are only released from their repressor when needed." The "use-it-or-lose-it" principle was proposed to explain this, which demands the frequent use of regulation factors because they would otherwise be subject to damaging effects.

Using computer simulations and theoretical calculations, Gerland and Hwa have now demonstrated that a second – even opposing – principle also comes into play: "wear-and-tear". Its name reflects the fact that constant use of regulators can also lead to detrimental consequences. The two researchers therefore investigated whether other factors that can affect the evolution of microorganisms play a role. "Our results clearly show that both principles are valid, even though they are actually contradictory," Gerland says. "In this conflict between maximal and minimal use of the regulators, other criteria do in fact come into play: the population size and the periods over which the environmental changes stretch."

Genetic regulation in small populations existing in an environment that only slowly changes is governed by the "use-it-or-lose-it" principle, with maximal use of the regulation proteins. In the opposite case, however, it is more "wear-and-tear" that comes into play with minimal use of the proteins. "The evolution of regulatory systems is still barely understood," reports Gerland. "So far, appropriate theoretical methods have also been largely lacking. But the time-dependent selection shown in our example may now prove to be an important factor in regulatory development. Many questions are still open, and our results will hopefully prompt further investigations."

Publication:
"Evolutionary selection between alternative modes of gene regulation",
Ulrich Gerland and Terence Hwa,
PNAS Early Edition, 22 May 2009
Contact:
Professor Ulrich Gerland
Tel.: 089 / 2180 – 4514
Fax: 089 / 2180 - 13545
E-mail: gerland@lmu.de

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de
http://www.physik.uni-muenchen.de/~gerland

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>