Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution's past is modern human's present

08.09.2011
Mandenka, Biaka and San tested for DNA evidence of ancient interbreeding inside Africa

The past is present when it comes to human evolution.

That seems to be the takeaway from new research that concludes "archaic" humans, somewhere in Africa during the last 20-60 thousand years, interbred with anatomically modern humans and transferred small amounts of genetic material to their offspring who are alive today.

University of Arizona geneticist Michael Hammer and a team of evolutionary biologists, geneticists and mathematicians report the finding in today's Proceedings of the National Academy of Sciences.

The National Science Foundation (NSF) in Arlington, Va., funded the study.

"It appears some level of interbreeding may have occurred in many parts of the world at different times in human evolution," said Hammer, whose work is the first to definitively suggest interbreeding between separate human forms inside of Africa.

Previous studies primarily examined modern human interbreeding with Neanderthals in Europe or other archaic forms in Asia. Analyses of ancient DNA in those studies suggest a small amount of gene flow occurred from Neanderthals into non-African offspring sometime after anatomically modern humans left Africa.

Additionally, researchers discovered evidence that a distinct group of extinct archaic humans who lived in Southern Siberia, called 'Denisovans,' contributed genetic material to the genomes of present-day Melanesians.

As Hammer and colleagues write in their recent report, "Given recent fossil evidence, however, the greatest opportunity for introgression was in Africa" where anatomically modern humans and various archaic forms co-existed for much longer than they did outside of Africa.

"We estimate that the archaic DNA fragments that survive in modern African genomes come from a form or forms that diverged from the common ancestor of anatomically modern humans 700 thousand to 1 million years ago," said Hammer.

"This archaic genetic material is more prevalent in west-central African populations, possibly reflecting a hybridization event or process that took place in central Africa," he said. "The populations that interbred were similar enough biologically so that they were able to produce fertile offspring, thus allowing genes to flow from one population to the other."

Hammer and team studied DNA sequence data from three sub-Saharan African populations: Mandenka, Biaka and San to test models of African archaic admixture.

The Mandenka are an agricultural population from West Africa, while the Biaka and the San are historically isolated hunter-gatherer populations from Central and Southern Africa, respectively.

The team conducted extensive simulations to test the likelihood of gene flow from an archaic population to anatomically modern humans. The simulations rejected the default position, or null hypothesis, that no admixture took place.

The result gave the scientists confidence to infer that contemporary African populations contain a small proportion of genetic material--about 2 percent--that moved from a species of archaic humans into the gene pool of anatomically modern humans about 35 thousand years ago.

They surmise that this archaic population split from the ancestors of anatomically modern humans about 700 thousand years ago.

"We do not have ancient DNA, i.e., from a fossil specimen, to directly compare with DNA from contemporary populations, so our approach was indirect or inferential," said Hammer. But there are several candidates in the African fossil record that may have added their genetic material to modern humans such as Homo heidelbergensis, an extinct species of the genus Homo that lived between 600 and 400 thousand years ago.

"This study represents an approach to answering long-standing questions about the contributions of archaic, extinct forms of our genus to the gene pool of our modern human species," said Carolyn Ehardt, Program Director for Biological Anthropology at NSF. "Previous to the advent of contemporary genetic techniques and approaches, the addressing of such pivotal questions in bioanthropological science was prohibitive."

Additionally, the research could provide greater insight into human physiology and assist the understanding of human diseases.

"It is entirely possible that some of the genes that were picked up from archaic forms by the ancestors of modern Africans were beneficial and are now part of the functional physiological machinery of contemporary populations," said Hammer. "This could be in the form of disease resistance alleles or other gene variations that led to novel adaptations in the modern population."

The research was funded by an NSF HOMINID grant that seeks to improve understanding of human origins.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>