Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward new drugs for the human and non-human cells in people

12.07.2012
Amid the growing recognition that only a small fraction of the cells and genes in a typical human being are human, scientists are suggesting a revolutionary approach to developing new medicines and treatments to target both the human and non-human components of people. That's the topic of an article, which reviews work relating to this topic from almost 100 studies, in ACS' Journal of Proteome Research.

Liping Zhao, Jeremy K. Nicholson and colleagues explain that human beings have been called "superorganisms" because their bodies contain 10 percent human cells and 90 percent microbes that live mainly in the intestines.

"Super" in that sense means "above and beyond." Scientists thus are viewing people as vast ecosystems in which human, bacterial, fungal and other cells interact with each another. Microbes, for instance, release substances that determine whether human genes turn on or off and influence the immune system's defenses against disease. And populations of microbes in the body change with changes in diet, medications and other factors.

"This superorganism view of the human body provides a complete new systems concept for managing human health at the clinically relevant whole body level," say the authors. They term it "one of the most significant paradigm shifts in modern medicine." The article describes how this revolutionary change is fostering emergence of an approach called "functional metagenomics" for developing new medicines.

It opens the possibility of sustaining health and treating disease with medicines and other substances that target non-human cells in the body. The article notes that many substances in traditional Chinese medicines may work in that way.

The authors acknowledge funding from the UK Foreign and Commonwealth Office/MOST and the Ministry of Science and Technology of the People's Republic of China.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>