Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA barcoding in danger of 'ringing up' wrong species

26.08.2008
DNA barcoding is a movement to catalog all life on earth by a simple standardized genetic tag, similar to stores labeling products with unique barcodes. The effort promises foolproof food inspection, improved border security, and better defenses against disease-causing insects, among many other applications.

But the approach as currently practiced churns out some results as inaccurately as a supermarket checker scanning an apple and ringing it up as an orange, according to a new Brigham Young University study. It was funded by the National Science Foundation and published in the prestigious Proceedings of the National Academy of Sciences.

With the International Barcode of Life project seeking $150 million to build on the 400,000 species that have been "barcoded" to date, this worthy goal warrants more careful execution, the BYU team says.

"To have that kind of data is hugely valuable, and the list of applications is endless and spans all of biology," said study co-author Keith Crandall, professor and chair of the Department of Biology at BYU. "But it all hinges on building an accurate database. Our study is a cautionary tale – if we're going to do it, let's do it right."

Proponents of DNA barcoding seek to establish a short genetic sequence as a way of identifying species in addition to traditional approaches based on external physical features. Their aim is to create a giant library full of these sequences. Scientists foresee a future handheld device like a supermarket scanner – a machine that would sequence a DNA marker from an organism, then compare it with the known encyclopedia of life and spit out the species' name.

This new approach requires only part of a sample. A feather left behind by a bird struck by an airliner, for example, would be enough to indicate its species and clue officials how to prevent future collisions. And organisms can be identified no matter what stage of life they are in – larvae of malaria-carrying mosquitoes contain the same DNA as the adult version of the insect targeted for eradication.

The portion of the gene selected as the universal marker by the barcoding movement is part of the genome found in an organism's mitochondria. But the BYU study showed the current techniques can mistakenly record instead the "broken" copy of the gene found in the nucleus of the organism's cells. This non-functional copy can be similar enough for the barcoding technique to capture, but different enough to call it a unique species, which would be a mistake. It is often difficult and time-consuming to identify this type contamination, which could lead to overestimating the number of species in a sample by more than several hundred percent, according to the BYU study.

BYU scientist Hojun Song, a post-doctoral researcher working in the laboratory of Michael Whiting, professor of biology, was preparing a paper based on his genetic analysis of grasshoppers. He noted that his sequencing turned up many of these problematic "numts" (nuclear mitochondrial pseudogenes), as scientists call these bits of inactive genetic code. When Crandall saw the unpublished paper, he recognized similar results from an analysis of cave crayfish conducted by his doctoral student, Jennifer Buhay, and recommended the two teams collaborate. The result is the PNAS paper, on which Song is the lead author and Buhay and Whiting are also co-authors, that recommends specific quality control procedures to ensure that correct genes are captured.

"I recognize that some who do DNA barcoding may be upset by this study, but that is the nature of science," Song said. "Building a genetic library of all life is a great goal, but we need to be careful to pay attention to the data that go into that library to make sure they are accurate."

Song and Crandall hope that when funding agencies hand out grants to pursue projects such as the International Barcode of Life that applicants will be required to use the procedures identified in the new paper to avoid a large portion of the numts that might otherwise be unfiltered.

Michael Smart | EurekAlert!
Further information:
http://www.byu.edu

Further reports about: Barcode Contamination DNA DNA Barcoding Genetic barcoding genetic sequence genetic tag

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>