Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA barcoding in danger of 'ringing up' wrong species

26.08.2008
DNA barcoding is a movement to catalog all life on earth by a simple standardized genetic tag, similar to stores labeling products with unique barcodes. The effort promises foolproof food inspection, improved border security, and better defenses against disease-causing insects, among many other applications.

But the approach as currently practiced churns out some results as inaccurately as a supermarket checker scanning an apple and ringing it up as an orange, according to a new Brigham Young University study. It was funded by the National Science Foundation and published in the prestigious Proceedings of the National Academy of Sciences.

With the International Barcode of Life project seeking $150 million to build on the 400,000 species that have been "barcoded" to date, this worthy goal warrants more careful execution, the BYU team says.

"To have that kind of data is hugely valuable, and the list of applications is endless and spans all of biology," said study co-author Keith Crandall, professor and chair of the Department of Biology at BYU. "But it all hinges on building an accurate database. Our study is a cautionary tale – if we're going to do it, let's do it right."

Proponents of DNA barcoding seek to establish a short genetic sequence as a way of identifying species in addition to traditional approaches based on external physical features. Their aim is to create a giant library full of these sequences. Scientists foresee a future handheld device like a supermarket scanner – a machine that would sequence a DNA marker from an organism, then compare it with the known encyclopedia of life and spit out the species' name.

This new approach requires only part of a sample. A feather left behind by a bird struck by an airliner, for example, would be enough to indicate its species and clue officials how to prevent future collisions. And organisms can be identified no matter what stage of life they are in – larvae of malaria-carrying mosquitoes contain the same DNA as the adult version of the insect targeted for eradication.

The portion of the gene selected as the universal marker by the barcoding movement is part of the genome found in an organism's mitochondria. But the BYU study showed the current techniques can mistakenly record instead the "broken" copy of the gene found in the nucleus of the organism's cells. This non-functional copy can be similar enough for the barcoding technique to capture, but different enough to call it a unique species, which would be a mistake. It is often difficult and time-consuming to identify this type contamination, which could lead to overestimating the number of species in a sample by more than several hundred percent, according to the BYU study.

BYU scientist Hojun Song, a post-doctoral researcher working in the laboratory of Michael Whiting, professor of biology, was preparing a paper based on his genetic analysis of grasshoppers. He noted that his sequencing turned up many of these problematic "numts" (nuclear mitochondrial pseudogenes), as scientists call these bits of inactive genetic code. When Crandall saw the unpublished paper, he recognized similar results from an analysis of cave crayfish conducted by his doctoral student, Jennifer Buhay, and recommended the two teams collaborate. The result is the PNAS paper, on which Song is the lead author and Buhay and Whiting are also co-authors, that recommends specific quality control procedures to ensure that correct genes are captured.

"I recognize that some who do DNA barcoding may be upset by this study, but that is the nature of science," Song said. "Building a genetic library of all life is a great goal, but we need to be careful to pay attention to the data that go into that library to make sure they are accurate."

Song and Crandall hope that when funding agencies hand out grants to pursue projects such as the International Barcode of Life that applicants will be required to use the procedures identified in the new paper to avoid a large portion of the numts that might otherwise be unfiltered.

Michael Smart | EurekAlert!
Further information:
http://www.byu.edu

Further reports about: Barcode Contamination DNA DNA Barcoding Genetic barcoding genetic sequence genetic tag

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>