Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical Protein Discovered for Healthy Cell Growth in Mammals

28.01.2014
A team of researchers from Penn State University and the University of California has discovered a protein that is required for the growth of tiny, but critical, hair-like structures called cilia on cell surfaces.

The discovery has important implications for human health because lack of cilia can lead to serious diseases such as polycystic kidney disease, blindness and neurological disorders.


Using mouse models, Penn State cellular biologist Aimin Liu and his colleagues discovered a protein that is required for the growth of critical, hair-like structures called cilia on cell surfaces. The cilia on a mouse embryo, shown in this micrograph, would not be able to grow without the protein C2cd3. Credit: Aimin Liu Lab, Penn State University.

"If we want to better understand and treat diseases related to cilium development, we need to identify important regulators of cilium growth and learn how those regulators function," said co-author Aimin Liu, associate professor of biology at Penn State. "This work gives us significant insight into one of the earliest steps in cilium formation."

The researchers describe their findings in a paper that will be published online in the Proceedings of the National Academy of Sciences during the week of 27 January 2014. In addition to Liu, authors include Penn State cellular biologists Xuan Ye, Huiqing Zeng and Gang Ning, as well as Jeremy F. Reiter, a biophysicist at the University of California - San Francisco.

Cilia, which are present on the surface of almost all mammalian cells, are responsible for sending, receiving, and processing information within the body. "You could think of cilia as the cells' antennae," Liu said. "Without cilia, the cells can't sense what's going on around them, and they can't communicate." Cilia also perform important filtering and cleansing functions. For example, cilia inside the trachea, or windpipe, trap and prevent bacteria from entering the lungs.

In a previous study, Liu and his colleagues learned that a protein called C2cd3 is important for cilium formation because mice that lacked this protein exhibited severe developmental problems typically associated with the lack of cilia. "At the time we knew only that if we get rid of the protein, the cells in the animal would not grow cilia," Liu said. "We didn't understand why, but now we do."

A cilium grows from a centriole, a structure that clings to the inner surface of the cell and serves as an anchor for the cilium. Before a cell can grow a cilium, it needs to assemble a set of appendages at one end of the centriole. These appendages can then connect the centriole to the cell surface, allowing the outgrowth of a cilium. Just how these appendages are assembled, though, remained a mystery for more than four decades since their discovery in 1962.

Liu and his colleagues found that appendages were not assembled at the end of the centriole when the C2cd3 protein is not present. As a result, the centriole is not associated with the cell membrane and cannot recruit other proteins for the further growth of the cilium. "So our protein is required for the very first step of putting a cilium together," Liu explained. "Without those appendages, the cilium growth cannot happen."

The researchers hope their discovery will lead to greater knowledge of the process of cilium development and, eventually, to treatments for a wide range of health problems that fall under the label of ciliopathy. "Ciliopathy is a scientific term that covers a lot of diseases," Liu said. As well as contributing to cystic disorders in the kidney and liver, lack of cilia can lead to blindness or deafness, since cilia in the retina serve as receptors that process light stimulation and cilia within the ear are required in neurons that translate sound waves into neural signals.

The research was funded by the National Institutes of Health (R01AR054396, R01GM095941), the Burroughs Wellcome Fund, the Packard Foundation, the Program for Breakthrough Biomedical Research, an American Heart Association Scientist Development Grant (0830174N) and Penn State University.

Contacts:
Aimin Liu: axl25@psu.edu, (+1) 814-865-7043
Barbara Kennedy (PIO): science@psu.edu, 814-863-4682

Krista Weidner | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Protein scaffold
27.05.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Seeing the action
27.05.2015 | University of California - Santa Barbara

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Researchers develop intelligent handheld robots

27.05.2015 | Power and Electrical Engineering

"Hidden" fragrance compound can cause contact allergy

27.05.2015 | Health and Medicine

Supernovas help 'clean' galaxies

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>