Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon-sequestering ocean plants may cope with climate changes over the long run

26.08.2013
A year-long experiment on tiny ocean organisms called coccolithophores suggests that the single-celled algae may still be able to grow their calcified shells even as oceans grow warmer and more acidic in Earth's near future.

The study stands in contrast to earlier studies suggesting that coccolithophores would fail to build strong shells in acidic waters. The world's oceans are expected to become more acidic as human activities pump increasing amounts of carbon dioxide into the Earth's atmosphere.


This is an image of the coccolithophore, Emiliania huxleyi, taken by lead author Ina Benner using the San Francisco State University FE-Scanning Electron Microscope.

Credit: Ina Benner

But after the researchers raised one strain of the Emiliania huxleyi coccolithorphore for over 700 generations, which took about 12 months, under high temperature and acidified conditions that are expected for the oceans 100 years from now, the organisms had no trouble producing their plated shells.

"At least in this experiment with one coccolithophore strain, when we combined higher levels of CO2 with higher temperatures, they actually did better in terms of calcification." said Jonathon Stillman, associate professor of biology at San Francisco State University, who along with Ed Carpenter, professor of biology, and Tomoko Komada, associate professor of chemistry, led a team of researchers at the University's Romberg Tiburon Center for Environmental Studies. The research was performed by postdoctoral scientist Ina Benner, masters students Rachel Diner and Dian Li and postdoctoral scientist Stephane Lefebvre.

Coccolithophores sequester oceanic carbon by incorporating it into their shells, which provide ballast to speed the sinking of carbon to the deep sea. These little organisms are central to the global carbon cycle, a role that could be disrupted if rising levels of atmospheric carbon dioxide and warming temperatures interfere with their ability to grow their calcified shells.

In previous experiments, the same SF State researchers found that the same strain of coccolithophores grown for hundreds of generations under cool and acidified water conditions grew less shell than those growing under current ocean conditions. In a short-term study by other researchers that examined the combined effects of higher temperatures and acidification, the same strain also had smaller shells under warmer and acidified conditions. However, results from this new long-term experiment suggest that this strain of coccolithophores may have the capacity to adapt to warmer and more acidic seas if given adequate time.

Stillman said the study underscores the importance of assessing multiple climactic factors and their impact on these organisms over a long time, to understand how they may cope with future oceanic environmental changes.

"We don't know why some strains might calcify more in the future, when others might calcify less," he said. Recent evidence indicates that the genetic diversity among coccolithophores in nature may hold part of the answer as to which strains and species might be "pre-adapted for future ocean conditions," Stillman added.

While these results indicate that coccolithophore calcification might increase under future ocean conditions, the researchers say that it's still unclear "whether, or how, such changes might affect carbon export to the deep sea."

The researchers received another surprise when they used recently developed genomic approaches to compare the expression of genes related to calcification in coccolithophores grown under current and future seawater conditions. "We really expected to see a lot of genes known to be involved in calcification to change significantly in the cells that thrived under high temperature and high acidity," Stillman said, "given their increased levels of calcification."

But the researchers found no significant changes in the expression of genes known to be involved in calcification from prior studies comparing strains with dramatically different calcification levels. It could be that these genes work as a sort of "on-off switch" for calcification, Stillman suggested. There may be other genes at work that control calcification in more subtle ways, affecting the degree of calcification.

The study by the RTC scientists was supported by the National Science Foundation and published in the August 26 issue of the Philosophical Transactions of the Royal Society B.

SF State is the only master's level public university serving the counties of San Francisco, San Mateo and Marin. The university enrolls more than 30,000 students each year. With nationally acclaimed programs in a range of fields -- from creative writing, cinema and biology to history, broadcast and electronic communications arts, theatre arts and ethnic studies -- the University's more than 140,000 graduates have contributed to the economic cultural and civic fabric of San Francisco and beyond.

Nan Broadbent | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>