Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain nerve cells key to stress resilience

31.03.2010
UT Southwestern Medical Center researchers have found new clues that might help explain why some people are more susceptible to stress than others.

In a study of mice, the researchers determined that weeks after experiencing a stressful event, animals that were more susceptible to stress exhibited enhanced neurogenesis – the birth of new nerve cells in the brain.

Specifically, the cells that these animals produced after a stressful event survived longer than new brain cells produced by mice that were more resilient.

In addition, when researchers prevented neurogenesis in both stress-susceptible and resilient mice, the animals previously susceptible to stress became more resilient.

"This work shows that there is a period of time during which it may be possible to alter memories relevant to a social situation by manipulating adult-generated nerve cells in the brain," said Dr. Amelia Eisch, associate professor of psychiatry at UT Southwestern and senior author of the study, available in the Proceedings of the National Academy of Sciences. "This could eventually lead to a better understanding of why, in humans, there is an enormous variety of responses to stressful situations."

Mice that are susceptible to stress exhibit long-lasting social avoidance and depressive-like behavior after experiencing a stressful event, such as being placed in a cage with a more aggressive mouse. Resilient mice behave more like unstressed control animals. This animal model is commonly used in studies of stress and depression, as understanding the changes in the brain and behavior of the mice can shed light on stress-induced changes in the human brain and in human behavior.

In the study, the brain cells of both groups of mice responded in similar ways after a stressful event. But weeks later, researchers found that mice displaying social avoidance had more nerve cells in a region of the brain called the hippocampus that survived the stressful event than mice that were more resilient.

The study is the first to link the memory of a social experience with neurogenesis in the hippocampus, Dr. Eisch said. Recently, Dr. Eisch and her team have linked adult neurogenesis with addiction. Previously, neurogenesis was primarily associated with spatial learning and memory.

In this study, Dr. Eisch and her colleagues exposed some mice to social defeat by having the animals live in the same cage as larger, aggressor mice for five minutes a day, and in the same cage but with a barrier in place the rest of the day. Researchers then tested the mice to see if they were susceptible to stress.

The researchers labeled the new cells of susceptible and unsusceptible mice so they could see how the cells divided. Both types of mice produced fewer dividing cells immediately after stress, but in the long run, mice susceptible to stress had more new adult cells than unsusceptible and control mice, who lived in cages with nonaggressor mice.

Dr. Eisch and her colleagues also used radiation to prevent hippocampal neurogenesis in all groups of mice. Mice susceptible to stress stopped producing new nerve cells and didn't display social avoidance in the long term.

Inhibiting social avoidance also had detrimental effects, however.

"Radiation in susceptible mice led to behavior that might be interpreted as harmful, such as approaching a potential aggressor mouse instead of avoiding it. We hypothesize that the survival of new nerve cells may be a compensatory event in the brain to allow the mouse to remember a socially relevant aggressor," Dr. Eisch said. "We are very eager to see if these results carry over to other models of stress in animals and to explore the mechanisms underlying these changes, as these are critical steps to understanding how adult-generated neurons might be modulated to help humans in stressful situations."

Future studies also will help determine which genes are involved with increased survival of new nerve cells in mice susceptible to stress, Dr. Eisch said.

Other UT Southwestern researchers participating in this study were Nathan DeCarolis, student research assistant in psychiatry and Shveta Malhotra, senior research associate in psychiatry. Others involved in the work were lead author Dr. Diane Lagace, former instructor of psychiatry, now at the University of Ottawa, as well as investigators from the University of Pennsylvania School of Medicine and Mount Sinai School of Medicine.

The study was supported by the National Institutes of Health, NASA, the National Alliance for Research on Schizophrenia and Depression, and the Canadian Institutes of Health Research.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in neurosciences, including psychiatry.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>