Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain nerve cells key to stress resilience

31.03.2010
UT Southwestern Medical Center researchers have found new clues that might help explain why some people are more susceptible to stress than others.

In a study of mice, the researchers determined that weeks after experiencing a stressful event, animals that were more susceptible to stress exhibited enhanced neurogenesis – the birth of new nerve cells in the brain.

Specifically, the cells that these animals produced after a stressful event survived longer than new brain cells produced by mice that were more resilient.

In addition, when researchers prevented neurogenesis in both stress-susceptible and resilient mice, the animals previously susceptible to stress became more resilient.

"This work shows that there is a period of time during which it may be possible to alter memories relevant to a social situation by manipulating adult-generated nerve cells in the brain," said Dr. Amelia Eisch, associate professor of psychiatry at UT Southwestern and senior author of the study, available in the Proceedings of the National Academy of Sciences. "This could eventually lead to a better understanding of why, in humans, there is an enormous variety of responses to stressful situations."

Mice that are susceptible to stress exhibit long-lasting social avoidance and depressive-like behavior after experiencing a stressful event, such as being placed in a cage with a more aggressive mouse. Resilient mice behave more like unstressed control animals. This animal model is commonly used in studies of stress and depression, as understanding the changes in the brain and behavior of the mice can shed light on stress-induced changes in the human brain and in human behavior.

In the study, the brain cells of both groups of mice responded in similar ways after a stressful event. But weeks later, researchers found that mice displaying social avoidance had more nerve cells in a region of the brain called the hippocampus that survived the stressful event than mice that were more resilient.

The study is the first to link the memory of a social experience with neurogenesis in the hippocampus, Dr. Eisch said. Recently, Dr. Eisch and her team have linked adult neurogenesis with addiction. Previously, neurogenesis was primarily associated with spatial learning and memory.

In this study, Dr. Eisch and her colleagues exposed some mice to social defeat by having the animals live in the same cage as larger, aggressor mice for five minutes a day, and in the same cage but with a barrier in place the rest of the day. Researchers then tested the mice to see if they were susceptible to stress.

The researchers labeled the new cells of susceptible and unsusceptible mice so they could see how the cells divided. Both types of mice produced fewer dividing cells immediately after stress, but in the long run, mice susceptible to stress had more new adult cells than unsusceptible and control mice, who lived in cages with nonaggressor mice.

Dr. Eisch and her colleagues also used radiation to prevent hippocampal neurogenesis in all groups of mice. Mice susceptible to stress stopped producing new nerve cells and didn't display social avoidance in the long term.

Inhibiting social avoidance also had detrimental effects, however.

"Radiation in susceptible mice led to behavior that might be interpreted as harmful, such as approaching a potential aggressor mouse instead of avoiding it. We hypothesize that the survival of new nerve cells may be a compensatory event in the brain to allow the mouse to remember a socially relevant aggressor," Dr. Eisch said. "We are very eager to see if these results carry over to other models of stress in animals and to explore the mechanisms underlying these changes, as these are critical steps to understanding how adult-generated neurons might be modulated to help humans in stressful situations."

Future studies also will help determine which genes are involved with increased survival of new nerve cells in mice susceptible to stress, Dr. Eisch said.

Other UT Southwestern researchers participating in this study were Nathan DeCarolis, student research assistant in psychiatry and Shveta Malhotra, senior research associate in psychiatry. Others involved in the work were lead author Dr. Diane Lagace, former instructor of psychiatry, now at the University of Ottawa, as well as investigators from the University of Pennsylvania School of Medicine and Mount Sinai School of Medicine.

The study was supported by the National Institutes of Health, NASA, the National Alliance for Research on Schizophrenia and Depression, and the Canadian Institutes of Health Research.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in neurosciences, including psychiatry.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>