Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists describe key mechanism in early embryo development

21.10.2011
New York University and University of Iowa biologists have identified a key mechanism controlling early embryonic development that is critical in determining how structures such as appendages—arms and legs in humans—grow in the right place and at the right time.

In a paper published in the journal PLoS Genetics, John Manak, an assistant professor of biology in the UI College of Liberal Arts and Sciences, and Chris Rushlow, a professor in NYU's Department of Biology, write that much research has focused on the spatial regulatory networks that control early developmental processes. However, they note, less attention has been paid to how such networks can be precisely coordinated over time.

Rushlow and Manak find that a protein called Zelda is responsible for turning on groups of genes essential to development in an exquisitely coordinated fashion.

"Zelda does more than initiate gene networks—it orchestrates their activities so that the embryo undergoes developmental processes in a robust manner at the proper time and in the correct order," says Rushlow, part of NYU's Center for Developmental Genetics.

"Our results demonstrate the significance of a timing mechanism in coordinating regulatory gene networks during early development, and bring a new perspective to classical concepts of how spatial regulation can be achieved," says Manak, who is also assistant professor of pediatrics in the Roy J. and Lucille A. Carver College of Medicine and researcher in the UI Roy J. Carver Center for Genomics.

The researchers note that their findings break new ground.

"We discovered a key transcriptional regulator, Zelda, which is the long-sought-after factor that activates the early zygotic genome," says Rushlow.

"Initially, the embryo relies on maternally deposited gene products to begin developing, and the transition to dependence on its own zygotic genome is called the maternal-to-zygotic transition," she adds. "Two hallmark events that occur during this transition are zygotic gene transcription and maternal RNA degradation, and interestingly, Zelda appears to be involved in both processes."

The research showed that when Zelda was absent, activation of genes was delayed, thus interfering with the proper order of gene interactions and ultimately disrupting gene expression patterns, the researchers noted, adding that the consequence to the embryo of altered expression patterns is a drastic change in the body plan such that many tissues and organs are not formed properly, if at all.

The researchers used Drosophila, or fruit flies, to investigate these regulatory networks. The fruit fly has the advantage of being a tractable genetic model system with a rapid developmental time, and many of the genetic processes identified in flies are conserved in humans. Additionally, pioneering fly research has led to many of the key discoveries of the molecular mechanisms underlying developmental processes in complex animals.

The study brought together Rushlow, who discovered Zelda and is an expert in genetic regulatory networks in development, and Manak, a genomics expert whose laboratory focuses on how a genome is constructed and coordinately functions.

"I had always wanted to work with Chris, and this was a wonderful opportunity for us to combine our complementary areas of expertise in a truly synergistic fashion," says Manak.

"Our collaboration is a marvelous example of how a problem can be viewed from two different perspectives, a systems view of early gene networks and an individualistic view of single genes and single embryos, and result in novel and significant discoveries," says Rushlow.

The project's author researchers were: Stephen Butcher of the UI Departments of Pediatrics and Biology; and Chung-yi Nien, Hsiao-lan Liang, Yujia Sun, Shengbo Fu, Tenzin Gocha, and Nikolai Kirov, all of the Center for Developmental Genetics, part of NYU's Department of Biology.

The research was funded by grants from the National Institutes of Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>