Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists describe key mechanism in early embryo development

21.10.2011
New York University and University of Iowa biologists have identified a key mechanism controlling early embryonic development that is critical in determining how structures such as appendages—arms and legs in humans—grow in the right place and at the right time.

In a paper published in the journal PLoS Genetics, John Manak, an assistant professor of biology in the UI College of Liberal Arts and Sciences, and Chris Rushlow, a professor in NYU's Department of Biology, write that much research has focused on the spatial regulatory networks that control early developmental processes. However, they note, less attention has been paid to how such networks can be precisely coordinated over time.

Rushlow and Manak find that a protein called Zelda is responsible for turning on groups of genes essential to development in an exquisitely coordinated fashion.

"Zelda does more than initiate gene networks—it orchestrates their activities so that the embryo undergoes developmental processes in a robust manner at the proper time and in the correct order," says Rushlow, part of NYU's Center for Developmental Genetics.

"Our results demonstrate the significance of a timing mechanism in coordinating regulatory gene networks during early development, and bring a new perspective to classical concepts of how spatial regulation can be achieved," says Manak, who is also assistant professor of pediatrics in the Roy J. and Lucille A. Carver College of Medicine and researcher in the UI Roy J. Carver Center for Genomics.

The researchers note that their findings break new ground.

"We discovered a key transcriptional regulator, Zelda, which is the long-sought-after factor that activates the early zygotic genome," says Rushlow.

"Initially, the embryo relies on maternally deposited gene products to begin developing, and the transition to dependence on its own zygotic genome is called the maternal-to-zygotic transition," she adds. "Two hallmark events that occur during this transition are zygotic gene transcription and maternal RNA degradation, and interestingly, Zelda appears to be involved in both processes."

The research showed that when Zelda was absent, activation of genes was delayed, thus interfering with the proper order of gene interactions and ultimately disrupting gene expression patterns, the researchers noted, adding that the consequence to the embryo of altered expression patterns is a drastic change in the body plan such that many tissues and organs are not formed properly, if at all.

The researchers used Drosophila, or fruit flies, to investigate these regulatory networks. The fruit fly has the advantage of being a tractable genetic model system with a rapid developmental time, and many of the genetic processes identified in flies are conserved in humans. Additionally, pioneering fly research has led to many of the key discoveries of the molecular mechanisms underlying developmental processes in complex animals.

The study brought together Rushlow, who discovered Zelda and is an expert in genetic regulatory networks in development, and Manak, a genomics expert whose laboratory focuses on how a genome is constructed and coordinately functions.

"I had always wanted to work with Chris, and this was a wonderful opportunity for us to combine our complementary areas of expertise in a truly synergistic fashion," says Manak.

"Our collaboration is a marvelous example of how a problem can be viewed from two different perspectives, a systems view of early gene networks and an individualistic view of single genes and single embryos, and result in novel and significant discoveries," says Rushlow.

The project's author researchers were: Stephen Butcher of the UI Departments of Pediatrics and Biology; and Chung-yi Nien, Hsiao-lan Liang, Yujia Sun, Shengbo Fu, Tenzin Gocha, and Nikolai Kirov, all of the Center for Developmental Genetics, part of NYU's Department of Biology.

The research was funded by grants from the National Institutes of Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>