Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biologists describe key mechanism in early embryo development

New York University and University of Iowa biologists have identified a key mechanism controlling early embryonic development that is critical in determining how structures such as appendages—arms and legs in humans—grow in the right place and at the right time.

In a paper published in the journal PLoS Genetics, John Manak, an assistant professor of biology in the UI College of Liberal Arts and Sciences, and Chris Rushlow, a professor in NYU's Department of Biology, write that much research has focused on the spatial regulatory networks that control early developmental processes. However, they note, less attention has been paid to how such networks can be precisely coordinated over time.

Rushlow and Manak find that a protein called Zelda is responsible for turning on groups of genes essential to development in an exquisitely coordinated fashion.

"Zelda does more than initiate gene networks—it orchestrates their activities so that the embryo undergoes developmental processes in a robust manner at the proper time and in the correct order," says Rushlow, part of NYU's Center for Developmental Genetics.

"Our results demonstrate the significance of a timing mechanism in coordinating regulatory gene networks during early development, and bring a new perspective to classical concepts of how spatial regulation can be achieved," says Manak, who is also assistant professor of pediatrics in the Roy J. and Lucille A. Carver College of Medicine and researcher in the UI Roy J. Carver Center for Genomics.

The researchers note that their findings break new ground.

"We discovered a key transcriptional regulator, Zelda, which is the long-sought-after factor that activates the early zygotic genome," says Rushlow.

"Initially, the embryo relies on maternally deposited gene products to begin developing, and the transition to dependence on its own zygotic genome is called the maternal-to-zygotic transition," she adds. "Two hallmark events that occur during this transition are zygotic gene transcription and maternal RNA degradation, and interestingly, Zelda appears to be involved in both processes."

The research showed that when Zelda was absent, activation of genes was delayed, thus interfering with the proper order of gene interactions and ultimately disrupting gene expression patterns, the researchers noted, adding that the consequence to the embryo of altered expression patterns is a drastic change in the body plan such that many tissues and organs are not formed properly, if at all.

The researchers used Drosophila, or fruit flies, to investigate these regulatory networks. The fruit fly has the advantage of being a tractable genetic model system with a rapid developmental time, and many of the genetic processes identified in flies are conserved in humans. Additionally, pioneering fly research has led to many of the key discoveries of the molecular mechanisms underlying developmental processes in complex animals.

The study brought together Rushlow, who discovered Zelda and is an expert in genetic regulatory networks in development, and Manak, a genomics expert whose laboratory focuses on how a genome is constructed and coordinately functions.

"I had always wanted to work with Chris, and this was a wonderful opportunity for us to combine our complementary areas of expertise in a truly synergistic fashion," says Manak.

"Our collaboration is a marvelous example of how a problem can be viewed from two different perspectives, a systems view of early gene networks and an individualistic view of single genes and single embryos, and result in novel and significant discoveries," says Rushlow.

The project's author researchers were: Stephen Butcher of the UI Departments of Pediatrics and Biology; and Chung-yi Nien, Hsiao-lan Liang, Yujia Sun, Shengbo Fu, Tenzin Gocha, and Nikolai Kirov, all of the Center for Developmental Genetics, part of NYU's Department of Biology.

The research was funded by grants from the National Institutes of Health.

James Devitt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>