Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Bacteria Age? Biologists Discover the Answer Follows Simple Economics

28.10.2011
When a bacterial cell divides into two daughter cells and those two cells divide into four more daughters, then 8, then 16 and so on, the result, biologists have long assumed, is an eternally youthful population of bacteria. Bacteria, in other words, don’t age—at least not in the same way all other organisms do.

But a study conducted by evolutionary biologists at the University of California, San Diego questions that longstanding paradigm. In a paper published in the November 8 issue of the journal Current Biology, they conclude that not only do bacteria age, but that their ability to age allows bacteria to improve the evolutionary fitness of their population by diversifying their reproductive investment between older and more youthful daughters. An advance copy of the study appears this week in the journal’s early online edition.

“Aging in organisms is often caused by the accumulation of non-genetic damage, such as proteins that become oxidized over time,” said Lin Chao, a professor of biology at UC San Diego who headed the study. “So for a single celled organism that has acquired damage that cannot be repaired, which of the two alternatives is better—to split the cellular damage in equal amounts between the two daughters or to give one daughter all of the damage and the other none?”

The UC San Diego biologists’ answer—that bacteria appear to give more of the cellular damage to one daughter, the one that has “aged,” and less to the other, which the biologists term “rejuvenation”—resulted from a computer analysis Chao and colleagues Camilla Rang and Annie Peng conducted on two experimental studies. Those studies, published in 2005 and 2010, attempted unsuccessfully to resolve the question of whether bacteria aged. While the 2005 study showed evidence of aging in bacteria, the 2010 study, which used a more sophisticated experimental apparatus and acquired more data than the previous one, suggested that they did not age.

“We analyzed the data from both papers with our computer models and discovered that they were really demonstrating the same thing,” said Chao. “In a bacterial population, aging and rejuvenation goes on simultaneously, so depending on how you measure it, you can be misled to believe that there is no aging.”

In a separate study, the UC San Diego biologists filmed populations of E. coli bacteria dividing over hundreds of generations and confirmed that the sausage-shaped bacteria divided each time into daughter cells that grew elongated at different rates—suggesting that one daughter cell was getting all or most of the cellular damage from its mother while the other was getting little or none. Click this link to watch the time-lapse film of one bacterium dividing over 10 generations into 1,000 bacteria in a period of five hours and see if you can see any differences.

“We ran computer models and found that giving one daughter more the damage and the other less always wins from an evolutionary perspective,” said Chao. “It’s analogous to diversifying your portfolio. If you could invest $1 million at 8 percent, would that provide you with more money than splitting the money and investing $500,000 at 6 percent and $500,000 at 10 percent?”

“After one year it makes no difference,” he added. “But after two years, splitting the money into the two accounts earns you more and more money because of the compounding effect of the 10 percent. It turns out that bacteria do the same thing. They give one daughter a fresh start, which is the higher interest-bearing account and the other daughter gets more of the damage.”

Although E. coli bacteria appear to divide precisely down the middle into two daughter cells, the discovery that the two daughters eventually grow to different lengths suggests that bacteria do not divide as symmetrically as most biologists have come to believe, but that their division is really “asymmetrical” within the cell.

“There must be an active transport system within the bacterial cell that puts the non-genetic damage into one of the daughter cells,” said Chao. “We think evolution drove this asymmetry. If bacteria were symmetrical, there would be no aging. But because you have this asymmetry, one daughter by having more damage has aged, while the other daughter gets a rejuvenated start with less damage.”

Media Contact: Kim McDonald (858) 534-7572; kmcdonald@ucsd.edu
Comment: Lin Chao (858) 822-2740; lchao@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>