Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Bacteria Age? Biologists Discover the Answer Follows Simple Economics

28.10.2011
When a bacterial cell divides into two daughter cells and those two cells divide into four more daughters, then 8, then 16 and so on, the result, biologists have long assumed, is an eternally youthful population of bacteria. Bacteria, in other words, don’t age—at least not in the same way all other organisms do.

But a study conducted by evolutionary biologists at the University of California, San Diego questions that longstanding paradigm. In a paper published in the November 8 issue of the journal Current Biology, they conclude that not only do bacteria age, but that their ability to age allows bacteria to improve the evolutionary fitness of their population by diversifying their reproductive investment between older and more youthful daughters. An advance copy of the study appears this week in the journal’s early online edition.

“Aging in organisms is often caused by the accumulation of non-genetic damage, such as proteins that become oxidized over time,” said Lin Chao, a professor of biology at UC San Diego who headed the study. “So for a single celled organism that has acquired damage that cannot be repaired, which of the two alternatives is better—to split the cellular damage in equal amounts between the two daughters or to give one daughter all of the damage and the other none?”

The UC San Diego biologists’ answer—that bacteria appear to give more of the cellular damage to one daughter, the one that has “aged,” and less to the other, which the biologists term “rejuvenation”—resulted from a computer analysis Chao and colleagues Camilla Rang and Annie Peng conducted on two experimental studies. Those studies, published in 2005 and 2010, attempted unsuccessfully to resolve the question of whether bacteria aged. While the 2005 study showed evidence of aging in bacteria, the 2010 study, which used a more sophisticated experimental apparatus and acquired more data than the previous one, suggested that they did not age.

“We analyzed the data from both papers with our computer models and discovered that they were really demonstrating the same thing,” said Chao. “In a bacterial population, aging and rejuvenation goes on simultaneously, so depending on how you measure it, you can be misled to believe that there is no aging.”

In a separate study, the UC San Diego biologists filmed populations of E. coli bacteria dividing over hundreds of generations and confirmed that the sausage-shaped bacteria divided each time into daughter cells that grew elongated at different rates—suggesting that one daughter cell was getting all or most of the cellular damage from its mother while the other was getting little or none. Click this link to watch the time-lapse film of one bacterium dividing over 10 generations into 1,000 bacteria in a period of five hours and see if you can see any differences.

“We ran computer models and found that giving one daughter more the damage and the other less always wins from an evolutionary perspective,” said Chao. “It’s analogous to diversifying your portfolio. If you could invest $1 million at 8 percent, would that provide you with more money than splitting the money and investing $500,000 at 6 percent and $500,000 at 10 percent?”

“After one year it makes no difference,” he added. “But after two years, splitting the money into the two accounts earns you more and more money because of the compounding effect of the 10 percent. It turns out that bacteria do the same thing. They give one daughter a fresh start, which is the higher interest-bearing account and the other daughter gets more of the damage.”

Although E. coli bacteria appear to divide precisely down the middle into two daughter cells, the discovery that the two daughters eventually grow to different lengths suggests that bacteria do not divide as symmetrically as most biologists have come to believe, but that their division is really “asymmetrical” within the cell.

“There must be an active transport system within the bacterial cell that puts the non-genetic damage into one of the daughter cells,” said Chao. “We think evolution drove this asymmetry. If bacteria were symmetrical, there would be no aging. But because you have this asymmetry, one daughter by having more damage has aged, while the other daughter gets a rejuvenated start with less damage.”

Media Contact: Kim McDonald (858) 534-7572; kmcdonald@ucsd.edu
Comment: Lin Chao (858) 822-2740; lchao@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>