Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody treatment protects monkeys from Hendra virus disease

20.10.2011
NIH-supported group exploring whether protection extends to Nipah virus disease

A human antibody given to monkeys infected with the deadly Hendra virus completely protected them from disease, according to a study published by National Institutes of Health (NIH) scientists and their collaborators.


This is the Hendra virus.
Credit: Courtesy Dr. Alex Hyatt, AAHL

Hendra and the closely related Nipah virus, both rare viruses that are part of the NIH biodefense research program, target the lungs and brain and have human case fatality rates of 60 percent and more than 75 percent, respectively. These diseases in monkeys mirror what happens in humans, and the study results are cause for hope that the antibody, named m102.4, ultimately may be developed into a possible treatment for people who become infected with these viruses.

In May 2010, shortly after the NIH study in monkeys successfully concluded, Australian health officials requested m102.4 for emergency use in a woman and her 12-year-old daughter. They had been exposed to Hendra virus from an ill horse that ultimately was euthanized. Both the woman and child survived and showed no side effects from the treatment.

"This is an important research advance that illustrates how scientific discoveries emerge through a steady stepwise process, and how our investment in research on countermeasures for biodefense and emerging infectious diseases can help global preparedness efforts," said Anthony S. Fauci, M.D., director of the NIH's National Institute of Allergy and Infectious Diseases (NIAID).

Hendra virus emerged in 1994 in Australia and primarily affects horses, which can spread the disease to humans. No person-to-person transmission of Hendra has been reported. Nipah virus emerged in 1998 in Malaysia, and also has been found in Bangladesh and India. Nipah appears to infect humans more easily than Hendra and can be transmitted from person to person.

The NIAID-supported study, which appears online in Science Translational Medicine, involved infecting 14 African green monkeys with a lethal dose of Hendra virus. Twelve of the monkeys then received two treatments with m102.4, one either at 10, 24, or 72 hours after being infected, and another 48 hours later. All 12 monkeys treated with the antibody survived. The two untreated control monkeys died eight days after being infected.

The findings are the result of a series of studies carried out by different research laboratories. A group from NIH's National Cancer Institute and the Uniformed Services University of the Health Sciences (USUHS) discovered m102.4 in 2006 and developed the antibody for use in laboratory research. USUHS and Australian collaborators then developed an animal study model of m102.4 in ferrets infected with Nipah virus; the University of Texas Medical Branch and USUHS developed a monkey study model of Hendra and Nipah infection; and together with investigators from Boston University and NIAID's Rocky Mountain Laboratories (RML) designed and carried out the antibody trial in biosafety level-4 (BSL-4) laboratory space at RML. Because the Hendra and Nipah viruses are so deadly and there is no licensed vaccine or treatment for either of them, both viruses must be studied in maximum-containment BSL-4 laboratories.

The World Health Organization reports 475 human cases of Nipah through 2008, with 251 deaths. Through the same period, there have been seven human Hendra cases with four fatalities. There also have been many horse fatalities. In their study, the scientists cite a handful of other outbreaks of Hendra virus in horses since 2008. Since June 2011, there have been 18 outbreaks in Australia, primarily in Queensland and New South Wales, with the latest reported Oct. 10.

Both viruses are spread by fruit bats, commonly known as flying foxes, which are reservoirs for these viruses. The fruit bats, which are resistant to the diseases, are found primarily in Australia but have been found as far west as Africa, north to India and Pakistan, and east to the Philippines.

Additional studies on m102.4 as a possible treatment and as a preventive vaccine for Nipah and Hendra virus infections are being planned.

###

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference: K Bossart et al. A neutralizing human monoclonal antibody protects African Green monkeys from Hendra virus challenge. Science Translational Medicine. DOI: 10.1126/scitranslmed.3002901 (2011).

--------------------------------------------------------------------------------

Ken Pekoc | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>