Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody treatment protects monkeys from Hendra virus disease

20.10.2011
NIH-supported group exploring whether protection extends to Nipah virus disease

A human antibody given to monkeys infected with the deadly Hendra virus completely protected them from disease, according to a study published by National Institutes of Health (NIH) scientists and their collaborators.


This is the Hendra virus.
Credit: Courtesy Dr. Alex Hyatt, AAHL

Hendra and the closely related Nipah virus, both rare viruses that are part of the NIH biodefense research program, target the lungs and brain and have human case fatality rates of 60 percent and more than 75 percent, respectively. These diseases in monkeys mirror what happens in humans, and the study results are cause for hope that the antibody, named m102.4, ultimately may be developed into a possible treatment for people who become infected with these viruses.

In May 2010, shortly after the NIH study in monkeys successfully concluded, Australian health officials requested m102.4 for emergency use in a woman and her 12-year-old daughter. They had been exposed to Hendra virus from an ill horse that ultimately was euthanized. Both the woman and child survived and showed no side effects from the treatment.

"This is an important research advance that illustrates how scientific discoveries emerge through a steady stepwise process, and how our investment in research on countermeasures for biodefense and emerging infectious diseases can help global preparedness efforts," said Anthony S. Fauci, M.D., director of the NIH's National Institute of Allergy and Infectious Diseases (NIAID).

Hendra virus emerged in 1994 in Australia and primarily affects horses, which can spread the disease to humans. No person-to-person transmission of Hendra has been reported. Nipah virus emerged in 1998 in Malaysia, and also has been found in Bangladesh and India. Nipah appears to infect humans more easily than Hendra and can be transmitted from person to person.

The NIAID-supported study, which appears online in Science Translational Medicine, involved infecting 14 African green monkeys with a lethal dose of Hendra virus. Twelve of the monkeys then received two treatments with m102.4, one either at 10, 24, or 72 hours after being infected, and another 48 hours later. All 12 monkeys treated with the antibody survived. The two untreated control monkeys died eight days after being infected.

The findings are the result of a series of studies carried out by different research laboratories. A group from NIH's National Cancer Institute and the Uniformed Services University of the Health Sciences (USUHS) discovered m102.4 in 2006 and developed the antibody for use in laboratory research. USUHS and Australian collaborators then developed an animal study model of m102.4 in ferrets infected with Nipah virus; the University of Texas Medical Branch and USUHS developed a monkey study model of Hendra and Nipah infection; and together with investigators from Boston University and NIAID's Rocky Mountain Laboratories (RML) designed and carried out the antibody trial in biosafety level-4 (BSL-4) laboratory space at RML. Because the Hendra and Nipah viruses are so deadly and there is no licensed vaccine or treatment for either of them, both viruses must be studied in maximum-containment BSL-4 laboratories.

The World Health Organization reports 475 human cases of Nipah through 2008, with 251 deaths. Through the same period, there have been seven human Hendra cases with four fatalities. There also have been many horse fatalities. In their study, the scientists cite a handful of other outbreaks of Hendra virus in horses since 2008. Since June 2011, there have been 18 outbreaks in Australia, primarily in Queensland and New South Wales, with the latest reported Oct. 10.

Both viruses are spread by fruit bats, commonly known as flying foxes, which are reservoirs for these viruses. The fruit bats, which are resistant to the diseases, are found primarily in Australia but have been found as far west as Africa, north to India and Pakistan, and east to the Philippines.

Additional studies on m102.4 as a possible treatment and as a preventive vaccine for Nipah and Hendra virus infections are being planned.

###

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference: K Bossart et al. A neutralizing human monoclonal antibody protects African Green monkeys from Hendra virus challenge. Science Translational Medicine. DOI: 10.1126/scitranslmed.3002901 (2011).

--------------------------------------------------------------------------------

Ken Pekoc | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>