Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Skeleton for Chromosomes

26.08.2013
Jan-Michael Peters and his team at the Research Institute of Molecular Pathology (IMP) found that the structure of Chromosomes is supported by a kind of molecular skeleton, made of cohesin. Their discovery is published in the current issue of the journal NATURE.

Every single cell in the human body contains an entire copy of the genetic blueprint, the DNA. Its total length is about 3.5 meters and all of it has to fit into the cell’s nucleus, just one-hundredth of a millimeter in diameter.


Artistic interpretation of fluorescent light micrographs of Wapl depleted nuclei which show cohesin vermicelli. The nuclei have been pseudo-colored and scaled to different sizes. IMP

Blown up in proportion, this would equal the task of squeezing a 150km long string into a soccer ball. Just how the cell manages to wrap up its DNA so tightly is still poorly understood.

One way of compacting DNA is achieved by coiling it tightly around histone-proteins. This mechanism has been studied in detail and is the focus of an entire discipline, Epigenetics. However, simple organisms such as bacteria have to manage their DNA-packaging without histones, and even in human cells histones probably cannot do the job on their own.

A new role for an old molecule

A team of scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now present evidence for an additional mechanism involved in structuring DNA. Managing Director Jan-Michael Peters and his research group discovered that a protein-complex named cohesin has a stabilizing effect on DNA. In evolutionary terms, cohesin is very old and its structure has hardly changed over billions of years. It was present long before histones and might therefore provide an ancient mechanism in shaping DNA.

Cell biologists are already familiar with cohesin and its role in cell division. The protein-complex is essential for the correct distribution of chromosomes to daughter cells. It forms a molecular ring that keeps sister-chromatids together until the precise moment when segregation takes place. This function and the molecular structure of cohesin have been discovered by IMP-scientists in 1997.

Antonio Tedeschi, a postdoc in the group of Jan-Michael Peters, has now found evidence that cohesin supports the architecture of DNA in non-dividing (interphase) cells. He analyzed cells in which he had shut down the function of Wapl. This protein controls how tightly cohesin binds to DNA. Without Wapl, cohesin is ‘locked’ onto chromatin in an unusually stable state. As a consequence, cells are unable to express their genes correctly and cannot divide.

Vermicelli keep DNA in shape

When he analyzed Wapl-depleted cells under the microscope, Tedeschi found elongated structures that he called “vermicelli” (Italian for small worms). Since one vermicello is present for each chromosome, he concluded that its function is to keep chromosomes in shape, rather like a skeleton.

“We think that the vermicelli are the ‘bones’ of interphase chromosomes”, says Jan-Michael Peters. “Just like our bodies depend on the bones for support, the cells depend very much on cohesin to retain their structure.”

The importance of the cohesin-system becomes obvious in cases where it is impaired. Several rare congenital diseases have been linked to mutations in the respective gene. The faulty structure of the cohesin molecule causes severe developmental retardation and is a serious medical condition. There are no causal therapies available at present.

Original publication: Wapl is an essential regulator of chromatin structure and chromosome segregation. Antonio Tedeschi et al. Doi: 10.1038/nature12471

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.
Contact
Dr. Heidemarie Hurtl
IMP Communications
Dr. Bohr Gasse 7
1030 Vienna, Austria
Tel.: (+43 1) 79730 3625
Mobile: (+43 1) 664 8247910
hurtl@imp.ac.at
Scientific Contact:
Dr. Jan-Michael Peters
jan-michael.peters@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>