Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Skeleton for Chromosomes

Jan-Michael Peters and his team at the Research Institute of Molecular Pathology (IMP) found that the structure of Chromosomes is supported by a kind of molecular skeleton, made of cohesin. Their discovery is published in the current issue of the journal NATURE.

Every single cell in the human body contains an entire copy of the genetic blueprint, the DNA. Its total length is about 3.5 meters and all of it has to fit into the cell’s nucleus, just one-hundredth of a millimeter in diameter.

Artistic interpretation of fluorescent light micrographs of Wapl depleted nuclei which show cohesin vermicelli. The nuclei have been pseudo-colored and scaled to different sizes. IMP

Blown up in proportion, this would equal the task of squeezing a 150km long string into a soccer ball. Just how the cell manages to wrap up its DNA so tightly is still poorly understood.

One way of compacting DNA is achieved by coiling it tightly around histone-proteins. This mechanism has been studied in detail and is the focus of an entire discipline, Epigenetics. However, simple organisms such as bacteria have to manage their DNA-packaging without histones, and even in human cells histones probably cannot do the job on their own.

A new role for an old molecule

A team of scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now present evidence for an additional mechanism involved in structuring DNA. Managing Director Jan-Michael Peters and his research group discovered that a protein-complex named cohesin has a stabilizing effect on DNA. In evolutionary terms, cohesin is very old and its structure has hardly changed over billions of years. It was present long before histones and might therefore provide an ancient mechanism in shaping DNA.

Cell biologists are already familiar with cohesin and its role in cell division. The protein-complex is essential for the correct distribution of chromosomes to daughter cells. It forms a molecular ring that keeps sister-chromatids together until the precise moment when segregation takes place. This function and the molecular structure of cohesin have been discovered by IMP-scientists in 1997.

Antonio Tedeschi, a postdoc in the group of Jan-Michael Peters, has now found evidence that cohesin supports the architecture of DNA in non-dividing (interphase) cells. He analyzed cells in which he had shut down the function of Wapl. This protein controls how tightly cohesin binds to DNA. Without Wapl, cohesin is ‘locked’ onto chromatin in an unusually stable state. As a consequence, cells are unable to express their genes correctly and cannot divide.

Vermicelli keep DNA in shape

When he analyzed Wapl-depleted cells under the microscope, Tedeschi found elongated structures that he called “vermicelli” (Italian for small worms). Since one vermicello is present for each chromosome, he concluded that its function is to keep chromosomes in shape, rather like a skeleton.

“We think that the vermicelli are the ‘bones’ of interphase chromosomes”, says Jan-Michael Peters. “Just like our bodies depend on the bones for support, the cells depend very much on cohesin to retain their structure.”

The importance of the cohesin-system becomes obvious in cases where it is impaired. Several rare congenital diseases have been linked to mutations in the respective gene. The faulty structure of the cohesin molecule causes severe developmental retardation and is a serious medical condition. There are no causal therapies available at present.

Original publication: Wapl is an essential regulator of chromatin structure and chromosome segregation. Antonio Tedeschi et al. Doi: 10.1038/nature12471

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.
Dr. Heidemarie Hurtl
IMP Communications
Dr. Bohr Gasse 7
1030 Vienna, Austria
Tel.: (+43 1) 79730 3625
Mobile: (+43 1) 664 8247910
Scientific Contact:
Dr. Jan-Michael Peters

Dr. Heidemarie Hurtl | idw
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>