Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When a light goes on during thought processes

02.10.2008
A nerve cell is a major hub for the exchange of valuable information. The nose, eyes, ears, and other sense organs perceive our environment through various antennae known as receptors. The numerous stimuli are then passed on to the neurons.

All of this information is collected, processed, and finally transferred to specific brain centers at these hubs - the human brain consists of almost 100 billion nerve cells. The nerve cell uses a special means of transport for this purpose: the action potential which codes the information, thus enabling communication between the nerve cells.

Calcium as the starting gun

An action potential of this kind is an electrical excitation and arises when our nerve cells receive the information via a stimulus: the voltage across the cell membrane of the neuron changes and various ion channels open and close in a very specialized manner. Shortly before the nerve cell forwards the information via the stimulus, calcium ions pour into the nerve cell, acting as the starting gun for the flow of data from one neuron to the next.

In the past, action potential was measured and rendered visible using microelectrodes. However, this method only enabled the monitoring of a limited number of cells engaged in the process of communication. Moreover, scientists were unable to record neuronal communication in a clearly identifiable way over a longer period or in freely moving animals using this method.

Yellow and blue fluorescent proteins

This situation could be set to change. As part of an intensive international cooperation project, Mazahir Hasan has made nerve cells, which release a single action potential, optically visible in mice. This means that the communication of entire groups of neurons can be observed over an extended period of time. Mazahir Hasan also attracted attention in 2004 when he demonstrated for the first time that fluorescent proteins are suitable for making activity in the brains of mice visible (Hasan et al., 2004 PLoS Biology 2:e163).

For this new recent development, Hasan used a sensor protein called D3cpv, which was generated by Amy Palmer at the Roger Tsien Laboratory of the University of California in San Diego, as a complex of numerous interconnected protein subunits. Two of these subunits react to the binding of calcium ions to the complex: the yellow-fluorescent protein (YFP) lights up and the illuminating power of cyan-fluorescent protein (CFP) declines - a coincidence that would later prove crucial to the success of the study.

The Max Planck scientists introduced the corresponding genetic material - that is the construction manual for this protein complex - into the genetic material of viruses. Hasan and his team then used these viruses as a genetic "ferry" for introducing the genetic material into the brains of mice. The protein complex was actually produced in the nerve cells of the "infected" mice and functions there as an calcium indicator: if the calcium level within a cell increases - which is the case with every action potential - the D3cpv changes form when it binds to calcium. As a result, the two fluorescent proteins, CFP and YFP, move closer to each other and the transmission of energy between the CFP and YFP changes.

"To observe this change, we use a two-photon microscope developed by Winfried Denk", explains Hasan. Each individual action potential that arises due to a stimulus makes itself directly perceivable in the brain through yellow illumination and the simultaneous reduction in the emission of blue light. The two-photon microscope pinpoints the coincidence between the two fluorescent signals very accurately and clearly reveals which nerve cells are communicating and exchanging information with each other and when.

Damian Wallace and Jason Kerr from the Max Planck Institute for Biological Cybernetics in Tübingen were able to confirm this finding: targeted electrical recordings of neuronal activity after the triggering of stimulus showed that the colour change actually coincides with the firing of the action potentials. Hasan’s method sheds light on which nerve cells will talk to each other and in which time period. However, it is only applicable if the neurons fire action potentials with a frequency of less than one hertz.

Insight into complex thought processes

The researchers were thus able to demonstrate for the first time that genetic calcium indicators provide optical proof of the perceptions of the sensory system in higher organisms. "With this method we can understand, in greater detail, how the human brain regulates complex thought processes and, for example, how it transforms the numerous sensory impressions into long-term memories", says Hasan. Developments resulting from the aging of the nerve cells can also be understood better as a result - "as we now have a way of observing the neurons over longer periods of time," concludes Hasan. Moreover, the sensor proteins could prove very useful in helping researchers to reach a better understanding at the cellular level of neurological diseases including Alzheimer’s, Parkinson’s, and Huntington’s chorea.

Mazahir T. Hasan | alfa
Further information:
http://goto.mpg.de/mpg/news/20081001/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>