Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPSRC achieves a world first in high performance computing

24.11.2003


For the first time supercomputers in the UK and the US have been linked to carry out an interactive scientific experiment. It involves three of the most powerful computing resources in the world working in parallel with each other.



This is the first demonstration of the use of the “Grid” to simultaneously link the high performance computers with remote visualisation centres in the UK and the US. This allowed scientists to interact with the computer models as they evolved in real time.

The “TeraGyroid” experiment was jointly funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC) and the National Science Foundation, USA (NSF). TeraGyroid is based on the e-Science pilot project RealityGrid.


The UK part of “TeraGyroid” involved the CSAR and HPCx high performance computer facilities, both administered by EPSRC, on behalf of Research Councils UK. In the US the resources on NSF’s Extensible Terascale Facility (ETF) were used.

The link between these computing facilities was provided by the UK’s e-Science Grid (administered by EPSRC on behalf of Research Councils UK) and the USA’s TeraGrid.

The e-Science “Grid” is intended as the natural successor to the Web – moving beyond the provision of seamless access to information to providing seamless integration of computer, data and other remote sources.

The experiment was coordinated from the Supercomputing 2003 conference in Phoenix, Arizona, USA from 00:00 Tuesday 18th November to 24:00 Thursday 20th November (GMT).

The experiment involved all of the high performance computing resources carrying out lattice Boltzmann calculations. This has never been done before on this scale and in such a limited space of time (72 hours). Lattice Boltzmann methods are complex theoretical calculations to model complex self-assembly and fluid flow.

The success of this experiment demonstrates that this linking of multiple high performance computers can allow scientists to expand their knowledge of small systems containing a few molecules to larger, macroscopic, real-world situations containing hundreds of thousands of billions of molecules.

EPSRC’s Director of Research and Innovation, Randal Richards, said: “This illustrates the increasing role that supercomputing power is taking in science, engineering and technology research. It also demonstrates, in line with a recent statement from Research Councils UK, that investment in such high end computing is strategic to the science and engineering base of the UK.”

The TeraGyroid experiment has access to a substantial fraction of the world’s largest supercomputing resources, including the whole of the UK’s supercomputing facilities and the USA’s supercomputers based in Illinois, Pittsburgh and San Diego. Trans-Atlantic optical bandwidth is supported by British Telecommunications. The largest simulations are in excess of one billion lattice sites. These larger simulations can only be accommodated on the HPCx, NCSA (National Center for Supercomputing Applications, Illinois) and PSC (Pittsburgh Supercomputing Center) platforms.

The TeraGyroid project couples cutting-edge grid technologies, high performance computing, visualisation and computational steering capabilities to produce a major leap forward in soft condensed matter simulation.

The lattice Boltzmann method is resource intensive. In general, running simulations on large systems (greater than 100x100x100 grid points) is not practical on small computers (PCS) due to the lack of memory resources and long processing times. Because of these extreme demands on memory and computation the algorithm is an ideal candidate for parallel computing.

CSAR (Computer Services for Academic Research) and HPCx are the UK’s national supercomputing services for the academic community, provided on behalf of the Research Councils. EPSRC is the managing agent for the services:

• CSAR is provided by a consortium “Computation for Science” led by Computer Services Corporation, partnered by SGI (Silicon Graphics, Inc.) and the University of Manchester.

• HPCx is provided by a consortium led by the University of Edinburgh, partnered by CCLRC (Council for the Central Laboratory of the Research Councils) and IBM.


The lattice-Boltzmann work is performed by the “RealityGrid” project which is part of the UK’s e-Science initiative. RealityGrid provided the visualisation link between the UK high performance computers. A central objective of RealityGrid is to extend the concept of a Virtual Reality Centre across the Grid, linking it to massive computational resources at high performance computer centres as well as to experimental facilities. For more information on RealityGrid visit: www.realitygrid.org/

The UK’s e-Science Core Programme is managed by the Engineering and Physical Sciences Research Council (EPSRC). It is part of a £230M Government investment in e-Science, which involves seven UK Research Councils and the DTI. The UK programme has also engaged industrial investment of £30M.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC: www.epsrc.ac.uk/

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk/

More articles from Information Technology:

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

nachricht Holograms taken to new dimension
19.07.2017 | University of Utah

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>