Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web-based attacks could create chaos in the physical world

02.05.2003


Computer security researchers suggest ways to thwart new form of cybercrime



Most experts on computer crime focus on attacks against Web servers, bank account tampering and other mischief confined to the digital world. But by using little more than a Web search engine and some simple software, a computer-savvy criminal or terrorist could easily leap beyond the boundaries of cyberspace to wreak havoc in the physical world, a team of Internet security researchers has concluded.

At a recent Association for Computing Machinery conference on privacy in an electronic society, the researchers -- including a Johns Hopkins faculty member -- described how automated order forms on the Web could be exploited to send tens of thousands of unwanted catalogs to a business or an individual. Such an onslaught would not only pose problems for the victim, but it could also paralyze the local post office charged with making such deliveries, the researchers suggested. After explaining how such attacks could take place, the researchers proposed several technological "fixes" that could help prevent them.


The rapid growth of the World Wide Web has enabled many merchants, government agencies and non-profit organizations to make sales catalogs and information packets available to anyone who can fill out a simple on-line form. But these forms, the researchers say, have also opened a gateway that could allow disruptive activity to spill out of cyberspace. "People have not considered how easily someone could leverage the scale and automation of the Internet to inflict damage on real-world processes," said Avi Rubin, technical director of the Information Security Institute at The Johns Hopkins University and one of the authors of the paper.

Rubin and two other researchers first determined that a popular search engine such as Google could be used to locate online order forms. They also discovered that simple software could be launched to automatically recognize and fill in fields such as "name," "address" and "city," and then submit the catalog request online. "It could be set up to send 30,000 different catalogs to one person or 30,000 copies of one catalog to 30,000 different recipients," said Rubin. "This could create a great expense for the sender, a huge burden for local postal facilities and chaos in the mail room of a business targeted to receive this flood of materials."

The technique could also be used to exploit the increasingly common Web-based forms used to request repair service, deliveries or parcel pickups, said Rubin, who also is an associate professor in the Department of Computer Science at Johns Hopkins. Tracking down the attacker could be difficult, he added. The offender could easily escape detection by loading the program onto a floppy disk or a small USB hard disk and paying cash for a few minutes of time at an Internet café. By the time the damage was discovered, the culprit would have vanished, Rubin said.

Because of the confusion and costs such attacks could inflict, Rubin and his fellow researchers wondered whether they should make public the technological weakness they’d uncovered; by doing so, they might provide a "blueprint" for people to launch such attacks. With this in mind, they did not publish their paper for some time after the initial research was done. However, after a popular search engine introduced its new Application Programming Interfaces, the researchers concluded that the attacks they envisioned were now much more likely to occur. In their paper they stated that "there is also a risk in not disclosing vulnerabilities for which there are known solutions. By not educating people who are in a position to defend against an attack, it can be more damaging to bury knowledge of a vulnerability than to announce it."

The researchers suggested several methods to deter the attacks they described. One is to set up online forms so that they cannot easily be picked up by a search engine. Another is to alter the HTML coding used to create an online form so that it no longer contains easily recognizable field names such as "name" and "address." (Such coding changes would not be visible to the person filling out the form.)

Yet another option is to include in each form a step that must be completed by a human computer user. This process, called a Reverse Turing Test, could display writing that could not easily be recognized by a computer, or it could require some other visual task that would trip up an automated ordering program. Other deterrents suggested by the researchers include client puzzles and monitored systems called "Honeypots," which are set up to attract cyber-attackers for early detections.

Hoping to prevent the type of cyber-attacks they’ve envisioned, the researchers have conferred with a top technology administrator from the U.S. Postal Service and have made their concerns and recommendations public on the Web. "To prevent these damaging activities," Rubin said, "we need to look at the interface between cyberspace and the real world and to make sure there is a real person submitting a legitimate request, not a computer program launching a disruptive attack."

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.avirubin.com/scripted.attacks.pdf
http://www.avirubin.com

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>