Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing with silicon neurons

28.01.2014
Scientists from Berlin and Heidelberg use artifical nerve cells to classify different types of data. Thus, they may recognize handwritten numbers, or distinguish plant species based on their flowers.

A bakery assistant who takes the bread from the shelf just to give it to his boss who then hands it over to the customer? Rather unlikely. Instead, both work at the same time to sell the baked goods. Similarly, computer programs are more efficient if they process data in parallel rather than to calculate them one after the other. However, most programs that are applied still work in a serial manner.


The neuromorphic chip containing silicon neurons which the researchers used for their data-classifying network.

Kirchhoff Institute for Physics, Heidelberg University

Scientists from the Freie Universität Berlin, the Bernstein Center Berlin and Heidelberg University have now refined a new technology that is based on parallel data processing. In the so-called neuromophic computing, neurons made of silicon take over the computational work on special computer chips. The neurons are linked together in a similar fashion to the nerve cells in our brain. If the assembly is fed with data, all silicon neurons work in parallel to solve the problem. The precise nature of their connections determines how the network processes the data. Once properly linked, the neuromorphic network operates almost by itself. The researchers have now designed a network–a neuromorphic “program”–for this chip that solves a fundamental computing problem: It can classify data with different features. It is able to recognize handwritten numbers, or may distinguish certain plant species based on flowering characteristics.

"The design of the network architecture has been inspired by the odor-processing nervous system of insects," explains Michael Schmuker, lead author of the study. "This system is optimized by nature for a highly parallel processing of the complex chemical world." Together with work group leader Martin Nawrot and Thomas Pfeil, Schmuker provided the proof of principle that a neuromorphic chip can solve such a complex task. For their study, the researchers used a chip with silicon neurons, which was developed at the Kirchhoff Institute for Physics of Heidelberg University.

Computer programs that can classify data are employed in various technical devices, such as smart phones. The neuromorphic network chip could also be applied in super-computers that are built on the model of the human brain to solve very complex tasks. Using their prototype, the Berlin scientists are now able to explore how networks must be designed to meet the specific requirements of these brain-like computer. A major challenge will be that not even two neurons are identical – neither in silicon nor in the brain.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Dr. Michael Schmuker
Freie Universität Berlin
Institute of Biology – Neurobiology
Königin-Luise-Straße 1-3, room 205
14195 Berlin 

Tel: +49 (0)30 838 57294
Email: m.schmuker@fu-berlin.de
Original publication:
M. Schmuker, T. Pfeil & M.P. Nawrot (2014): A neuromorphic network for generic multivariate data classification. PNAS, published ahead of print January 27, doi:10.1073/pnas.1303053111

http://www.pnas.org/cgi/doi/10.1073/pnas.1303053111

Weitere Informationen:

http://biomachinelearning.net personal website Michael Schmuker
http://fu-berlin.de/neuroinformatik Martin Paul Nawrot’s lab
https://www.bccn-berlin.de Bernstein Center Berlin
http://www.fu-berlin.de Freie Universität Berlin
http://www.kip.uni-heidelberg.de/cms/groups/vision Electronic Vision(s), Heidelberg University

http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://www.nncn.de

More articles from Information Technology:

nachricht Miniscule Mirrored Cavities Connect Quantum Memories
24.06.2015 | Department of Energy, Office of Science

nachricht SASER-Siegfried – Record-breaking Transmission Field Trial
24.06.2015 | EURESCOM European institute for research and strategic studies in telecommunications

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>