Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale undergrads' Amazon trip yields a treasure trove of diversity

26.08.2008
A group of Yale undergraduates have discovered dozens of potentially beneficial bioactive microorganisms within plants they collected in the Amazon rain forest, including several so genetically distinct that they may be the first members of new taxonomical genera.

The analysis of 135 endophytes - fungal and bacterial microorganisms living within the inner tissue of plants - by members of the Rain Forest Expedition and Laboratory course at Yale will be published Monday in the journal PLoS ONE.

The endophytes were collected during a 2007 trip to Peru organized by Scott Strobel, chair of the Department of Molecular Biophysics and Biochemistry at Yale, with a grant from the Howard Hughes Medical Institute.

The ability of 15 untrained students to find and culture such a novel collection of organisms, many of which are biologically active, illustrates the vast scientific potential of tropical areas, Strobel said.

"The sheer amount of diversity the students discovered surprised everybody,'' Strobel said. "We have only just begun to tap the potential of these microorganisms. Our undergraduates have given us a peek at the treasure these habitats hold and we need to move quickly to preserve them."

The students collected the specimens in March of 2007 and spent much of the next six months isolating and culturing the organisms, sequencing their DNA, and screening them for biological activity. Nearly half of the organisms analyzed showed evidence of bioactivity.

Endophytes remain relatively unstudied by scientists, however their potential value was illustrated more than a decade ago when the blockbuster cancer drug taxol was isolated from a fungal endophyte collected from a Pacific Yew tree.

Already, the Yale undergraduates have found at least two endophytes with some therapeutic potential. Undergraduate Cong "Carl" Ma, working in collaboration with recent graduate Puyao Li, found one fungal endophtye with anti-oxidant properties.

Yale undergraduate Sun Jin Lee discovered that an extract from a second fungal endophtye reduces inflammation in human tissue. A subsequent analysis of the molecule revealed it to be an inhibitor of apoptosis, or programmed cell death.

In addition, the endophyte studied by Lee was one of 10 that varied by 15 to 30 percent from any sequence of DNA stored in GenBank, the virtual repository of genetic sequences of organisms. Such a difference is sufficient to classify the micro-organism in an entirely novel genus.

"The diversity we found blew everyone away,'' Lee said.

Strobel said that a second Yale expedition conducted last March in Ecuador has yielded just as diverse a collection of bioactive endophytes as the 2007 effort.

"Clearly the inner tissues of plants are a biological niche for microbial life that warrants further exploration," Strobel said. "It is a niche that can be readily explored by undergraduate students. The potential to explore something so completely unknown gets the students very excited about science."

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>