Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Yale undergrads' Amazon trip yields a treasure trove of diversity

A group of Yale undergraduates have discovered dozens of potentially beneficial bioactive microorganisms within plants they collected in the Amazon rain forest, including several so genetically distinct that they may be the first members of new taxonomical genera.

The analysis of 135 endophytes - fungal and bacterial microorganisms living within the inner tissue of plants - by members of the Rain Forest Expedition and Laboratory course at Yale will be published Monday in the journal PLoS ONE.

The endophytes were collected during a 2007 trip to Peru organized by Scott Strobel, chair of the Department of Molecular Biophysics and Biochemistry at Yale, with a grant from the Howard Hughes Medical Institute.

The ability of 15 untrained students to find and culture such a novel collection of organisms, many of which are biologically active, illustrates the vast scientific potential of tropical areas, Strobel said.

"The sheer amount of diversity the students discovered surprised everybody,'' Strobel said. "We have only just begun to tap the potential of these microorganisms. Our undergraduates have given us a peek at the treasure these habitats hold and we need to move quickly to preserve them."

The students collected the specimens in March of 2007 and spent much of the next six months isolating and culturing the organisms, sequencing their DNA, and screening them for biological activity. Nearly half of the organisms analyzed showed evidence of bioactivity.

Endophytes remain relatively unstudied by scientists, however their potential value was illustrated more than a decade ago when the blockbuster cancer drug taxol was isolated from a fungal endophyte collected from a Pacific Yew tree.

Already, the Yale undergraduates have found at least two endophytes with some therapeutic potential. Undergraduate Cong "Carl" Ma, working in collaboration with recent graduate Puyao Li, found one fungal endophtye with anti-oxidant properties.

Yale undergraduate Sun Jin Lee discovered that an extract from a second fungal endophtye reduces inflammation in human tissue. A subsequent analysis of the molecule revealed it to be an inhibitor of apoptosis, or programmed cell death.

In addition, the endophyte studied by Lee was one of 10 that varied by 15 to 30 percent from any sequence of DNA stored in GenBank, the virtual repository of genetic sequences of organisms. Such a difference is sufficient to classify the micro-organism in an entirely novel genus.

"The diversity we found blew everyone away,'' Lee said.

Strobel said that a second Yale expedition conducted last March in Ecuador has yielded just as diverse a collection of bioactive endophytes as the 2007 effort.

"Clearly the inner tissues of plants are a biological niche for microbial life that warrants further exploration," Strobel said. "It is a niche that can be readily explored by undergraduate students. The potential to explore something so completely unknown gets the students very excited about science."

Bill Hathaway | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>