Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds better way to gauge the climate costs of land use change

09.01.2012
Those making land use decisions to reduce the harmful effects of climate change have focused almost exclusively on greenhouse gases – analyzing, for example, how much carbon dioxide is released when a forest is cleared to grow crops.
A new study in Nature Climate Change aims to present a more complete picture – to incorporate other characteristics of ecosystems that also influence climate.

“We know that forests store a lot of carbon and clearing a forest releases carbon dioxide into the atmosphere and contributes to climate change,” said University of Illinois postdoctoral researcher Kristina Anderson-Teixeira, who pioneered the new approach with plant biology and Energy Biosciences Institute professor Evan DeLucia. “But ecosystems provide other climate regulation services as well.”

The climate effects of a particular ecosystem also depend on its physical attributes, she said. One such attribute is its reflectivity, a quality climate scientists call albedo.

“If you think of an open snow-covered field or bare sandy soil, that ground acts somewhat like a mirror, reflecting solar radiation back to space,” Anderson-Teixeira said. “In contrast, a forest is dark and absorbs a lot of solar radiation. In that sense, any type of vegetation is going to warm the land surface to some extent.”

Another factor that should be considered is an ecosystem’s ability to release heat through the evaporation of water. The more water available in an ecosystem, the more it cools itself by evapotranspiration or, as DeLucia puts it, “planetary sweating.”

“It takes a great deal of energy to convert liquid water to vapor, and this transition cools the soil and the surface of leaves as water evaporates, in the same way that sweating cools your skin,” said DeLucia, who also is an affiliate of the Institute for Genomic Biology at Illinois.

Scientists have known about biophysical effects for a long time, Anderson-Teixeira said. “But the challenge has been to incorporate them into a single metric that will help us design land-use policies that are going to help mitigate – and not exacerbate – climate change.”

To tackle this problem, Anderson-Teixeira and DeLucia teamed with University of Minnesota professors Peter Snyder and Tracy Twine; professor Santiago Cuadra, of the Federal Center of Technological Education in Rio de Janeiro; and professor Marcos Costa, of the Ministry of Science, Technology and Innovation in Brazil.

The researchers compiled data to calculate the “greenhouse gas value” of 18 “ecoregions” across North and South America, and also modeled the ecoregions’ biophysical characteristics. They looked at several types of forest, as well as grassland, tundra, tropical savanna and agricultural crops, such as soy, sugarcane, corn, miscanthus and switchgrass.

“The challenge of combining the greenhouse gases with the biophysical effects is that they operate over very different spatial and temporal scales,” Anderson-Teixeira said. To integrate the two, the researchers first divided the local biophysical effects by the global land surface area. They then combined the measures and converted the values into carbon dioxide equivalents, a common currency in the world of climate mitigation.

The researchers found that biophysical attributes make a tropical rainforest even more valuable for protection against climate warming, but lessen the climate value of boreal (evergreen) forests in Canada.

Any forest provides a climate service by storing carbon, the researchers said, but forests also absorb more solar radiation than bare ground. Tropical forests cool the land by evapotranspiration, but northern boreal forests have much lower evapotranspiration and are dark in comparison to open spaces. These factors give Amazon forests “the highest climate regulation value of all the ecoregions we studied,” Anderson-Teixeira said.

Crops also have an enhanced climate-regulating value when their biophysical attributes are considered, DeLucia said.

“When considering only their effect on greenhouse gases, annually tilled row crops like corn tend to have a warming effect by contributing large quantities of nitrous oxide and carbon dioxide to the atmosphere,” he said. “But when you factor in the ability to reflect solar energy and high rates of evapotranspiration, the net effect (compared with bare ground) is cooling.”

Ecosystems perform a lot of other services of importance to humans and the planet, DeLucia said.

“While the climate-regulating value that we propose in this paper captures how ecosystems affect climate, it is important to note that this is only one of many services ecosystems provide,” he said. “Ultimately the value of any given ecosystem to society must include these other services, including biodiversity, water purification and the production of food and fiber, to name just a few.”

The researchers note that theirs is not the only valid way to quantify the climate services various ecosystems offer. But it captures more of the picture than previous methods have.

“We hope that this approach will help to design land-use policies that protect the climate,” Anderson-Teixeira said.

Editor’s notes: To reach Evan DeLucia, call 217- 333-6177; email delucia@illinois.edu.
To reach Kristina Anderson-Teixeira,
email kateixei@illinois.edu.
The paper, “Climate Regulation Services of Natural and Agricultural Ecoregions of the Americas,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>