Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification – a problem in the tropics?

28.10.2011
The Leibniz Center for Tropical Marine Ecology is hosting a symposium on ocean acidification on November the 1st with the aim of bringing together international experts to discuss the problem of ocean acidification. The symposium will focus on the impact of acidification in tropical marine ecosystems.

By burning fossil fuels, humans release carbon dioxide into the atmosphere. Carbon dioxide is then absorbed by the oceans where it reacts with water to form carbonic acid. The more acidic the water becomes, the lesser will be the amount of free carbonate ions. Carbonate is an essential component of the calcium carbonate structures built by many organisms such as corals, clams, snails or calcareous algae.


Stony coral
Foto: E. Borell, ZMT

How organisms react to ocean acidification is currently one of the hottest topics in marine ecology and biogeochemistry. More specifically, marine scientists are trying to understand what is the combined effect on marine life of different disturbing factors like warming, eutrophication and ocean acidification. Coral reefs seem to be particularly sensitive to ocean acidification, with worse predictions suggesting that coral reef ecosystems may disappear by the end of this century.

Given the growing concerns, ocean acidification is rapidly becoming a topic of large-scale research projects. In Germany, for example, a national initiative for a coordinated project entitled “Biological Impacts of Ocean ACIDification" (BIOACID) has been financially supported by the German Ministry of Education and Research (BMBF). BIOACID is closely coordinated with the European Project on OCean Acidification (EPOCA) funded as part of the 7th EU Framework Programme. Some ZMT scientists are actively contributing to the EPOCA research efforts. In addition, ZMT ecologists, geologists, socioeconomists and modellers are developing multidisciplinary cooperative projects on the topic.

The symposium will be an exciting opportunity to hear about the current state of acidification research and to discuss the relevance of the problems to tropical marine ecosystems.

Further informations:

Prof. Dr. Agostino Merico
Dept. of Ecological Modelling
Tel: 0421 / 23800 – 111
Email: agostino.merico@zmt-bremen.de

Dr. Susanne Eickhoff | idw
Further information:
http://www.zmt-bremen.de

Further reports about: BIOACID EPOCA Pacific Ocean ZMT marine ecosystem ocean acidification reef ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>