Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oil change due? Optimal date is to be determined during normal operation

If lubricants and hydraulic fluids in construction machines, airplanes or industrial installations are used too long, gears and other components can be heavily damaged.

On the other hand, each oil change especially for large equipment is time consuming and expensive. Engineers at Saarland University and the new Center for Mechatronics and Automation (ZeMA) are developing a new method for determining the oil quality during normal operation. The measurement approach will indicate exactly when the oil should be changed. The development will be presented from April 19 to 23 at the Saarland research booth at the Hannover Industrial Trade Fair (Hall 2, Stand C 44).

Today additives are used to make lubricants for gears or hydraulic fluids more durable. However, when the additives are worn out by aging processes, the oil quality will deteriorate rapidly. "Due to this fact the oil is changed very early to prevent damaging the expensive equipment in many applications", Andreas Schütze, Professor for measurement technology at Saarland University, says. His team is currently developing a measurement cell together with academic and industrial partners, which can be mounted directly in hydraulic systems. Using an infrared light source based on silicon micromachining the oil is screened. An infrared detector determines which wavelengths pass through the fluid. The more the oil is aged the more the detected light pattern is changed. "This allows indicating the optimal time for the next oil change. In addition, we can also determine if the system was contaminated by water", the engineer explains.

The measurement cell can currently be used up to a pressure of 100 bar. In the future this range will be expanded to address further applications, e.g. in airplane hydraulics. Also the method will be applied to other fluids like alcohol or glycol. "Today laboratory analytical techniques are used to determine the aging of fluids. We are trying to measure the wear during normal operation", Andreas Schütze says. This is especially important for closed hydraulic systems , e.g. in airplanes. But also application areas like automotive could benefit, if the cell can be produced cheaply in high volumes. "Considering the high oil volumes, e.g. in large hydraulic installations, optimized oil change intervals are not only much more cost effective. The environment will also benefit, by less waste of oil. So the total demand of oil can be reduced and the consumption of this expensive resource is more economic", Schütze explains.

The method is developed in close cooperation with the new Center for Mechatronics and Automation (ZeMA) in Saarbrücken. The primary goal of ZeMA is application oriented research and the transfer of new methods from academia to industrial application. ZeMA works together with Saarland University, the University of Applied Sciences (HTW) as well with partners from industry. ZeMA addresses challenging projects with the goal of improving the efficiency of industrial processes.

For further questions:

Prof. Dr. Andreas Schütze
Laboratory for Measurement Technology at Saarland University
Phone +49 (0) 681 / 302 4663
Dipl.-Ing. Torsten Bley
Phone +49 (0) 681 / 302 5017
Phone +49 (0) 511 / 89 497101 (at the Hannover Fair booth)
Dr.-Ing. Alexander Kraus
ZeMA - Zentrum für Mechatronik und Automatisierungstechnik gemeinnützige GmbH
Tel. +49 (0) 681 / 58 67600
Information for radio journalists:
You can do phone interviews in studio-quality with scientists from the University of the Saarland, on radio ISDN codec. For interview requests please contact the press office (0681/302-3610)

Friederike Meyer zu Tittingdorf | idw
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>