Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil change due? Optimal date is to be determined during normal operation

14.04.2010
If lubricants and hydraulic fluids in construction machines, airplanes or industrial installations are used too long, gears and other components can be heavily damaged.

On the other hand, each oil change especially for large equipment is time consuming and expensive. Engineers at Saarland University and the new Center for Mechatronics and Automation (ZeMA) are developing a new method for determining the oil quality during normal operation. The measurement approach will indicate exactly when the oil should be changed. The development will be presented from April 19 to 23 at the Saarland research booth at the Hannover Industrial Trade Fair (Hall 2, Stand C 44).

Today additives are used to make lubricants for gears or hydraulic fluids more durable. However, when the additives are worn out by aging processes, the oil quality will deteriorate rapidly. "Due to this fact the oil is changed very early to prevent damaging the expensive equipment in many applications", Andreas Schütze, Professor for measurement technology at Saarland University, says. His team is currently developing a measurement cell together with academic and industrial partners, which can be mounted directly in hydraulic systems. Using an infrared light source based on silicon micromachining the oil is screened. An infrared detector determines which wavelengths pass through the fluid. The more the oil is aged the more the detected light pattern is changed. "This allows indicating the optimal time for the next oil change. In addition, we can also determine if the system was contaminated by water", the engineer explains.

The measurement cell can currently be used up to a pressure of 100 bar. In the future this range will be expanded to address further applications, e.g. in airplane hydraulics. Also the method will be applied to other fluids like alcohol or glycol. "Today laboratory analytical techniques are used to determine the aging of fluids. We are trying to measure the wear during normal operation", Andreas Schütze says. This is especially important for closed hydraulic systems , e.g. in airplanes. But also application areas like automotive could benefit, if the cell can be produced cheaply in high volumes. "Considering the high oil volumes, e.g. in large hydraulic installations, optimized oil change intervals are not only much more cost effective. The environment will also benefit, by less waste of oil. So the total demand of oil can be reduced and the consumption of this expensive resource is more economic", Schütze explains.

The method is developed in close cooperation with the new Center for Mechatronics and Automation (ZeMA) in Saarbrücken. The primary goal of ZeMA is application oriented research and the transfer of new methods from academia to industrial application. ZeMA works together with Saarland University, the University of Applied Sciences (HTW) as well with partners from industry. ZeMA addresses challenging projects with the goal of improving the efficiency of industrial processes.

For further questions:

Prof. Dr. Andreas Schütze
Laboratory for Measurement Technology at Saarland University
Phone +49 (0) 681 / 302 4663
E-Mail: schuetze@lmt.uni-saarland.de
Dipl.-Ing. Torsten Bley
Phone +49 (0) 681 / 302 5017
Phone +49 (0) 511 / 89 497101 (at the Hannover Fair booth)
E-Mail: torsten.bley@mechatronikzentrum.de
Dr.-Ing. Alexander Kraus
ZeMA - Zentrum für Mechatronik und Automatisierungstechnik gemeinnützige GmbH
Tel. +49 (0) 681 / 58 67600
E-Mail: info@mechatronikzentrum.de
Information for radio journalists:
You can do phone interviews in studio-quality with scientists from the University of the Saarland, on radio ISDN codec. For interview requests please contact the press office (0681/302-3610)

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.lmt.uni-saarland.de
http://www.mechatronikzentrum.de
http://www.uni-saarland.de/pressefotos

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>