Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s smallest battery created at CINT nanotechnology center

10.12.2010
Snake-like “Medusa front” offers “a view never before seen” to improve lithium batteries

A benchtop version of the world’s smallest battery — its anode a single nanowire one seven-thousandth the thickness of a human hair —has been created by a team led by Sandia National Laboratories researcher Jianyu Huang.

To better study the anode’s characteristics, the tiny rechargeable, lithium-based battery was formed inside a transmission electron microscope (TEM) at the Center for Integrated Nanotechnologies (CINT), a Department of Energy research facility jointly operated by Sandia and Los Alamos national laboratories.

Says Huang of the work, reported in the Dec. 10 issue of the journal Science, “This experiment enables us to study the charging and discharging of a battery in real time and at atomic scale resolution, thus enlarging our understanding of the fundamental mechanisms by which batteries work.”

Because nanowire-based materials in lithium ion batteries offer the potential for significant improvements in power and energy density over bulk electrodes, more stringent investigations of their operating properties should improve new generations of plug-in hybrid electric vehicles, laptops and cell phones.

“What motivated our work,” says Huang, “is that lithium ion batteries [LIB] have very important applications, but the low energy and power densities of current LIBs cannot meet the demand. To improve performance, we wanted to understand LIBs from the bottom up, and we thought in-situ TEM could bring new insights to the problem.”

Battery research groups do use nanomaterials as anodes, but in bulk rather than individually — a process, Huang says, that resembles “looking at a forest and trying to understand the behavior of an individual tree.”

The tiny battery created by Huang and co-workers consists of a single tin oxide nanowire anode 100 nanometers in diameter and 10 micrometers long, a bulk lithium cobalt oxide cathode three millimeters long, and an ionic liquid electrolyte. The device offers the ability to directly observe change in atomic structure during charging and discharging of the individual “trees.”

An unexpected find of the researchers was that the tin oxide nanowire rod nearly doubles in length during charging — far more than its diameter increases — a fact that could help avoid short circuits that may shorten battery life. “Manufacturers should take account of this elongation in their battery design,” Huang said. (The common belief of workers in the field has been that batteries swell across their diameter, not longitudinally.)

Huang’s group found this flaw by following the progression of the lithium ions as they travel along the nanowire and create what researchers christened the “Medusa front” — an area where high density of mobile dislocations cause the nanowire to bend and wiggle as the front progresses. The web of dislocations is caused by lithium penetration of the crystalline lattice. “These observations prove that nanowires can sustain large stress (>10 GPa) induced by lithiation without breaking, indicating that nanowires are very good candidates for battery electrodes,” said Huang.

“Our observations — which initially surprised us — tell battery researchers how these dislocations are generated, how they evolve during charging, and offer guidance in how to mitigate them,” Huang said. “This is the closest view to what’s happening during charging of a battery that researcher have achieved so far.”

Lithiation-induced volume expansion, plasticity and pulverization of electrode materials are the major mechanical defects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, Huang said. “So our observations of structural kinetics and amorphization [the change from normal crystalline structure] have important implications for high-energy battery design and in mitigating battery failure.”

The electronic noise level generated from the researchers’ measurement system was too high to read electrical currents, but Sandia co-author John Sullivan estimated a current level of a picoampere flowing in the nanowire during charging and discharging. The nanowire was charged to a potential of about 3.5 volts, Huang said.

A picoampere is a millionth of a microampere. A microampere is a millionth of an ampere.

The reason that atomic-scale examination of the charging and discharging process of a single nanowire had not been possible was because the high vacuum in a TEM made it difficult to use a liquid electrolyte. Part of the Huang group’s achievement was to demonstrate that a low-vapor-pressure ionic liquid — essentially, molten salt —could function in the vacuum environment.

Although the work was carried out using tin oxide (SnO2) nanowires, the experiments can be extended to other materials systems, either for cathode or anode studies, Huang said.

“The methodology that we developed should stimulate extensive real-time studies of the microscopic processes in batteries and lead to a more complete understanding of the mechanisms governing battery performance and reliability,” he said. “Our experiments also lay a foundation for in-situ studies of electrochemical reactions, and will have broad impact in energy storage, corrosion, electrodeposition and general chemical synthesis research field.”

Other researchers contributing to this work include Xiao Hua Liu, Nicholas Hudak, Arunkumar Subramanian and Hong You Fan, all of Sandia; Li Zhong, Scott Mao and Li Qiang Zhang of the University of Pittsburgh; Chong Min Wang and Wu Xu of Pacific Northwest National Laboratory; and Liang Qi, Akihiro Kushima and Ju Li of the University of Pennsylvania.

Funding came from Sandia’s Laboratory Directed Research and Development Office and the Department of Energy’s Office of Science through the Center for Integrated Nanotechnologies and the Energy Frontier Research Centers program.

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov (505) 845-7078

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>