Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World’s Largest Hydrogen Electrolysis Facility


Siemens and its partners have officially commissioned the world’s largest hydrogen electrolysis facility. The centerpiece of the installation, which is known as the Mainz Energy Farm, is a high-pressure PEM electrolyzer. The electrolyzer can ramp up to its full capacity of up to six megawatts in a matter of seconds, making it ideal for use with the rapidly changing output of renewable generation systems.

PEM stands for polymer electrolyte membrane, and describes a process designed to generate hydrogen using water and electricity. Part of a two-year research project, the facility’s partners are Siemens, RheinMain University, Linde, and the Mainz (Germany) municipal utilities.

Siemens and its partners have officially commissioned the world’s largest hydrogen electrolysis facility with a capacity of up to six megawatts.

The Mainz facility has sufficient capacity to deal with bottlenecks in the power network and power surges from small wind farms. It produces hydrogen using electricity that is largely sourced from nearby wind turbines. Hydrogen that is generated using renewable energy can be added to the gas network as an energy storage medium, or used for industrial processes, or supplied to fuel cell-powered vehicles.

Flexible Facility

Siemens supplied the core of the facility, which consists of the electrolysis systems, which are equipped with Simatic controls.

In addition, Siemens provided medium voltage stations with GEAFOL transformators, which supply the low and high voltage supply units of the Sinamic converters and a gas-insulated medium voltage switchboard (20kV). The overall control system of the Energy Farm is also Simatic based.

It is maintained by Linde which is also responsible for purifying, condensing, storing and filling the hydrogen. RheinMain University is providing scientific supervision. The project analyzes the interaction of all components, for example between electrolysis and compressor or the coupling with the power and the gas networks.

Within the electrolyzer – unlike the conventional method, which uses alkaline electrolysis – a proton-conducting membrane (PEM) creates a partition between the two electrodes where oxygen and hydrogen are separated.

The result is that the new PEM electrolyzer provides a highly dynamic response within milliseconds and can briefly cope with 1.5 times its power rating, which means it can deal with excess power production without difficulty even if there is a spike in generation.

Perfect Energy Source

Hydrogen’s versatility is a major advantage. It can be converted back into electricity, it can power vehicles, or be methanized – a process in which hydrogen (H2) reacts with CO2 to produce methane, the main component in natural gas. In this way, energy can be stored in existing natural gas infrastructures and used for heating or powering vehicles.

Hydrogen is more than just a perfect energy source. It is also an important raw material for the chemical industry. But today, it is obtained almost entirely from natural gas. A superior alternative, however, would be to produce hydrogen from renewable electricity at a cost that would be competitive with using natural gas.

At that point, hydrogen could form a veritable “dream team” in conjunction with the greenhouse gas carbon dioxide. Here, the basic concept is that carbon monoxide (CO), an important intermediate product in the chemical industry, is obtained from fossil energy sources. Instead, however, it could also be generated from CO2 and H2, producing water as a byproduct. This reaction takes place using special catalyzers that Bayer is developing in collaboration with partners in the scientific world. Another catalyzer could also produce formic acid, which is another important basic substance in organic chemistry. Norbert Aschenbrenner

Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG

Mr. Florian Martini

Journalist Inquieries

Siemens AG

Dr. Norbert Aschenbrenner | Siemens - Pictures of the Future

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>