Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Largest Hydrogen Electrolysis Facility

15.07.2015

Siemens and its partners have officially commissioned the world’s largest hydrogen electrolysis facility. The centerpiece of the installation, which is known as the Mainz Energy Farm, is a high-pressure PEM electrolyzer. The electrolyzer can ramp up to its full capacity of up to six megawatts in a matter of seconds, making it ideal for use with the rapidly changing output of renewable generation systems.

PEM stands for polymer electrolyte membrane, and describes a process designed to generate hydrogen using water and electricity. Part of a two-year research project, the facility’s partners are Siemens, RheinMain University, Linde, and the Mainz (Germany) municipal utilities.


Siemens and its partners have officially commissioned the world’s largest hydrogen electrolysis facility with a capacity of up to six megawatts.

The Mainz facility has sufficient capacity to deal with bottlenecks in the power network and power surges from small wind farms. It produces hydrogen using electricity that is largely sourced from nearby wind turbines. Hydrogen that is generated using renewable energy can be added to the gas network as an energy storage medium, or used for industrial processes, or supplied to fuel cell-powered vehicles.

Flexible Facility

Siemens supplied the core of the facility, which consists of the electrolysis systems, which are equipped with Simatic controls.

In addition, Siemens provided medium voltage stations with GEAFOL transformators, which supply the low and high voltage supply units of the Sinamic converters and a gas-insulated medium voltage switchboard (20kV). The overall control system of the Energy Farm is also Simatic based.

It is maintained by Linde which is also responsible for purifying, condensing, storing and filling the hydrogen. RheinMain University is providing scientific supervision. The project analyzes the interaction of all components, for example between electrolysis and compressor or the coupling with the power and the gas networks.

Within the electrolyzer – unlike the conventional method, which uses alkaline electrolysis – a proton-conducting membrane (PEM) creates a partition between the two electrodes where oxygen and hydrogen are separated.

The result is that the new PEM electrolyzer provides a highly dynamic response within milliseconds and can briefly cope with 1.5 times its power rating, which means it can deal with excess power production without difficulty even if there is a spike in generation.

Perfect Energy Source

Hydrogen’s versatility is a major advantage. It can be converted back into electricity, it can power vehicles, or be methanized – a process in which hydrogen (H2) reacts with CO2 to produce methane, the main component in natural gas. In this way, energy can be stored in existing natural gas infrastructures and used for heating or powering vehicles.

Hydrogen is more than just a perfect energy source. It is also an important raw material for the chemical industry. But today, it is obtained almost entirely from natural gas. A superior alternative, however, would be to produce hydrogen from renewable electricity at a cost that would be competitive with using natural gas.

At that point, hydrogen could form a veritable “dream team” in conjunction with the greenhouse gas carbon dioxide. Here, the basic concept is that carbon monoxide (CO), an important intermediate product in the chemical industry, is obtained from fossil energy sources. Instead, however, it could also be generated from CO2 and H2, producing water as a byproduct. This reaction takes place using special catalyzers that Bayer is developing in collaboration with partners in the scientific world. Another catalyzer could also produce formic acid, which is another important basic substance in organic chemistry. Norbert Aschenbrenner


Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Journalist Inquieries

Siemens AG
florian.martini@siemens.com

www.siemens.com

Dr. Norbert Aschenbrenner | Siemens - Pictures of the Future

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>