Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind farms: A danger to ultra-light aircraft?

01.08.2012
Airfields for ultra-light aircraft are typically constructed on level ground – and so are wind farms. However, do wind power plantsgenerate turbulence that could endanger lightweight planes? A simulation can compute how these power plants influence aircraft at various wind speeds and wind directions.

For a motorized hangglider or a one-seater weighing 300 kilograms: the business of flying by ultra-light aircraft is booming. That is also why numerous airfields are applying for the license to host these lightweight gliders. Most of these airfields are located on flat land, which is also the preferred terrain for wind power plant.


The simulation reveals the turbulence generated by wind turbines. The red beam indicates heavy turbulence – which is particularly common behind the wind power plant.
© Fraunhofer IWES

However, these facilities could turn out to be a risk factor for aviators, especially when it comes to takeoff and landing: On the one hand, the power plants “pilfer” the winds from the planes, because wind speeds aft of such facilities are considerably lower. If the aircraft fly in the region behind the rotor, then they will suddenly find themselves contending with an entirely new aerodynamic situation. On the other hand, rotors produce turbulence in the air that could equally interfere with the aircraft.

Simulation calculates turbulence

The extent to which wind turbines impact ultra-light aircraft is an especially pertinent question now at the Linnich-Boslar ULV Airfield, where a major wind farm is slated for construction in close proximity. The operator, BMR Windenergie, wants to be sure – prior to construction – that no risk imperils the aviators. On behalf of this company, researchers at the Fraunhofer Institute for Wind Energy and Energy System Technology IWES in Oldenburg developed a simulation that enables them to calculate what turbulence these facilities generate, how they alter wind speed and what influence these factors have on airplanes.

“We conducted these simulations under a variety of scenarios,” says Dr. Bernhard Stoevesandt, head of department at IWES. “We simulated various wind directions, two different wind speeds and five different flight trajectories in which the plane is under the rotor’s sphere of influence for various lengths of time.”

Complex grid model

For the simulations, the researchers initially created a computer model of the ground and a wind profile of the surrounding area where the wind farm is to be built. A grid was placed over the model. The computer calculates how the power plants alter wind conditions and turbulence at various points on the grid. “The true skill is in the creation of the grid: Because the points on the grid where the computer makes the individual calculations must lie at exactly the right places,” explains Stoevesandt.

The complexity of the simulation is enormous – the software must calculate the prevailing currents within several million grid cells that mutually influence each other. Other challenges consist in properly depicting the trail – that is, the turbulence and the change in wind speed behind the rotor – and determining how it affects the airplane. “To validate the simulations, the trail from actual wind energy plants was measured at various individual points behind the rotor, and the measurements compared with the simulations,” affirms Stoevesandt. “Each of the data matched well.”

Altogether, the scientists examined the effects of wind farms within an approximately 1500 meter perimeter and an altitude of up to 500 meters. By comparison, the hub of the rotor is 123 meters in height. The finding: At the Linnich-Boslar landing field, the turbulence generated by the wind turbines is lower than the ordinary turbulence of the surrounding environment. Still, this finding can only be applied to other airports to a limited extent, because the surrounding terrain has a tremendous impact on the trail; unlike flat terrain, the trail is different where the landscape is forested or hilly. “The simulations would have to be commensurately adjusted for those kinds of airfields,” says Stoevesandt.

Dr. rer. nat. Bernhard Stoevesandt | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/wind-farms-a-danger-to-ultra-light-aircraft.html

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>