Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water Mist Puts Out Fires at Low Pressure

22.08.2011
With a new water mist system, fires can be extinguished even from a distance of eight meters.

Sinorix H2O Jet is meant for industrial environments, including turbines, painting lines, or production equipment. Special nozzles generate a fine mist of tiny water droplets.


The water and the propellant nitrogen are non-hazardous, environmentally friendly, and leave no residues. Sinorix H2O Jet won the Innovation Award in the Fire Fighting category at the Expoprotection trade fair in Paris.

The prerequisites for a fire are oxygen, heat, and fuel. If just one of these factors is eliminated, the fire goes out. Depending on the application, automated fire suppression systems use a variety of agents: water, gases, or a combination of gas and water. Water cools down the flammable material and environment and thereby prevents the fire from spreading rapidly.

And water mist systems have several advantages over sprinklers and foam or gaseous fire-extinguishing systems: The water damage that sprinklers cause to expensive furnishings or equipment is avoided, and no salt residues or surfactants from foam extinguishing agents are left behind. In the past, however, the water mist has been generated by means of high pressure, which makes the installation relatively expensive.

That’s why Siemens Building Technologies has developed a two-phase technology that uses low pressure.

Sinorix H2O Jet was specially developed for the protection of physical assets and their environment. The two-phase technology uses a mixture of water and nitrogen to generate a maximum cooling effect — at a pressure of less than 16 bar with water droplets of 150 to 200 micrometers in diameter. And the smaller the water droplet size, the larger the surface area for heat absorption and for smothering a fire.

When planning a Sinorix H2O Jet system, the Siemens experts calculate the ideal droplet size for the property or equipment to be protected. The system works with two different types of nozzles. One is for protection of the objects; it is a patented nozzle that operates according to the Laval principle and can be used to target and extinguish from a distance of up to eight meters. The other nozzle protects objects as well as their surroundings and controls the fire.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Building Technologies FIRE H2O Jet Engines Water Snake droplet size water droplets

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>