Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wastewater produces electricity and desalinates water

10.08.2009
A process that cleans wastewater and generates electricity can also remove 90 percent of salt from brackish water or seawater, according to an international team of researchers from China and the U.S.

Clean water for drinking, washing and industrial uses is a scarce resource in some parts of the world. Its availability in the future will be even more problematic.

Many locations already desalinate water using either a reverse osmosis process -- one that pushes water under high pressure through membranes that allow water to pass but not salt -- or an electrodialysis process that uses electricity to draw salt ions out of water through a membrane. Both methods require large amounts of energy.

"Water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water," the researchers report in a recent online issue of Environmental Science and Technology.

"The big selling point is that it currently takes a lot of electricity to desalinate water and using the microbial desalination cells, we could actually desalinate water and produce electricity while removing organic material from wastewater," said Bruce Logan, Kappe Professor of Environmental Engineering, Penn State

The team modified a microbial fuel cell -- a device that uses naturally occurring bacteria to convert wastewater into clean water producing electricity -- so it could desalinate salty water.

"Our main intent was to show that using bacteria we can produce sufficient current to do this," said Logan. "However, it took 200 milliliters of an artificial wastewater -- acetic acid in water -- to desalinate 3 milliliters of salty water. This is not a practical system yet as it is not optimized, but it is proof of concept."

A typical microbial fuel cell consists of two chambers, one filled with wastewater or other nutrients and the other with water, each containing an electrode. Naturally occurring bacteria in the wastewater consume the organic material and produce electricity.

The researchers, who also included Xiaoxin Cao, Xia Huang, Peng Liang, Kang Xiao, Yinjun Zhou and Xiaoyuan Zhang, at Tsinghua University, Beijing, changed the microbial fuel cell by adding a third chamber between the two existing chambers and placing certain ion specific membranes -- membranes that allow either positive or negative ions through, but not both -- between the central chamber and the positive and negative electrodes. Salty water to be desalinated is placed in the central chamber.

Seawater contains about 35 grams of salt per liter and brackish water contains 5 grams per liter. Salt not only dissolves in water, it dissociates into positive and negative ions. When the bacteria in the cell consume the wastewater it releases charged ions -- protons -- into the water. These protons cannot pass the anion membrane, so negative ions move from the salty water into the wastewater chamber. At the other electrode protons are consumed, so positively charged ions move from the salty water to the other electrode chamber, desalinating the water in the middle chamber.

The desalination cell releases ions into the outer chambers that help to improve the efficiency of electricity generation compared to microbial fuel cells.

"When we try to use microbial fuel cells to generate electricity, the conductivity of the wastewater is very low," said Logan. "If we could add salt it would work better. Rather than just add in salt, however in places where brackish or salt water is already abundant, we could use the process to additionally desalinate salty water, clean the wastewater and dump it and the resulting salt back into the ocean."

Because the salt in the water helps the cell generate electricity, as the central chamber becomes less salty, the conductivity decreases and the desalination and electrical production decreases, which is why only 90 percent of the salt is removed. However, a 90 percent decrease in salt in seawater would produce water with 3.5 grams of salt per liter, which is less than brackish water. Brackish water would contain only 0.5 grams of salt per liter.

Another problem with the current cell is that as protons are produced at one electrode and consumed at the other electrode, these chambers become more acidic and alkaline. Mixing water from the two chambers together when they are discharged would once again produce neutral, salty water, so the acidity and alkalinity are not an environmental problem assuming the cleaned wastewater is dumped into brackish water or seawater. However, the bacteria that run the cell might have a problem living in highly acidic environments.

For this experiment, the researchers periodically added a pH buffer avoiding the acid problem, but this problem will need to be considered if the system is to produce reasonable amounts of desalinized water.

King Abdullah University of Science and Technology, Saudi Arabia and Ministry of Science and Technology, China, supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>