Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unfazed by imperfections

11.07.2011
The strong coupling between electrical currents and magnetization in topological insulator materials is surprisingly unaffected by impurities

While insulating against electrical currents in their interior, the surface of materials called topological insulators permits the flow of electron spins relatively unhindered.

The almost lossless flow of spin information makes topological insulators a promising new class of materials for electronic applications: the electron spins could be harnessed to transmit information in the same way that electrical charges are used in conventional electronics.

Electron spins are also susceptible to magnetic fields, so electrical control of the magnetic fields of these materials would offer further control over the properties of electronic devices. Magnetic impurities in these materials, however, have thwarted attempts by experimental physicists to fabricate topological insulators, because they destroy the characteristic energy structure of a topological insulator.

In a theoretical study, Kentaro Nomura and Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako, have unexpectedly discovered that the electrical control of magnetization in topological insulators is actually enhanced by the presence of magnetic impurities. It may be possible, therefore, to develop novel devices from topological insulators by creating magnetization with electrical fields.

Topological insulators owe their unique properties to time-reversal symmetry: if the flow of time were reversed, the material would behave in the same way. Magnetic impurities break this symmetry, as magnetism is sensitive to time reversal; electrical currents flowing forward and backward in time create magnetic fields pointing in opposite directions. Physicists therefore expected that magnetic impurities would disrupt the magnetization generated by electrical currents on the surface of a topological insulator.

Nomura and Nagaosa’s calculations, however, showed that randomly distributed magnetic impurities do not influence the strong coupling between electrical currents and magnetic fields. Electrical currents at the surface are quantized, which means that they change only in steps. Therefore, a change in the energy structure of the material would not affect the electric current and magnetization. The randomness of the impurities increases the usable energy range, says Nomura. “Usually impurities and disorder smear desired effects. In this case, imperfections enhance them.”

This finding is welcome news for experimental physicists working on topological insulators. All samples fabricated to date contain so many impurities that observing spin currents at their surface is almost impossible. The discovery that magnetic impurities should have no detrimental effect improves the likelihood of observing the proposed control of magnetization. Consequently, says Nomura, “a number of experimental groups are already working on this issue. I think this effect will be observed, hopefully soon.”

The corresponding author for this highlight is based at the Strong-Correlation Theory Research Team, RIKEN Advanced Science Institute

Reference:
Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Physical Review Letters 106, 166802 (2011).

Chen, Y.L., Chu, J.-H., Analytis, J.G., Liu, Z.K., Igarashi, K., Kuo, H.-H., Qi, X.L., Mo, S.K., Moore, R.G., Lu, D.H., et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>