Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara scientists develop a whole new way of harvesting energy from the sun

25.02.2013
A new method of harvesting the Sun's energy is emerging, thanks to scientists at UC Santa Barbara's Departments of Chemistry, Chemical Engineering, and Materials.

Though still in its infancy, the research promises to convert sunlight into energy using a process based on metals that are more robust than many of the semiconductors used in conventional methods. The researchers' findings are published in the latest issue of the journal Nature Nanotechnology.

"It is the first radically new and potentially workable alternative to semiconductor-based solar conversion devices to be developed in the past 70 years or so," said Martin Moskovits, professor of chemistry at UCSB.

In conventional photoprocesses, a technology developed and used over the last century, sunlight hits the surface of semiconductor material, one side of which is electron-rich, while the other side is not. The photon, or light particle, excites the electrons, causing them to leave their postions, and create positively-charged "holes." The result is a current of charged particles that can be captured and delivered for various uses, including powering lightbulbs, charging batteries, or facilitating chemical reactions.

"For example, the electrons might cause hydrogen ions in water to be converted into hydrogen, a fuel, while the holes produce oxygen," said Moskovits.

In the technology developed by Moskovits and his team, it is not semiconductor materials that provide the electrons and venue for the conversion of solar energy, but nanostructured metals — a "forest" of gold nanorods, to be specific.

For this experiment, gold nanorods were capped with a layer of crystalline titanium dioxide decorated with platinum nanoparticles, and set in water. A cobalt-based oxidation catalyst was deposited on the lower portion of the array.

"When nanostructures, such as nanorods, of certain metals are exposed to visible light, the conduction electrons of the metal can be caused to oscillate collectively, absorbing a great deal of the light," said Moskovits. "This excitation is called a surface plasmon."

As the "hot" electrons in these plasmonic waves are excited by light particles, some travel up the nanorod, through a filter layer of crystalline titanium dioxide, and are captured by platinum particles. This causes the reaction that splits hydrogen ions from the bond that forms water. Meanwhile, the holes left behind by the excited electrons head toward the cobalt-based catalyst on the lower part of the rod to form oxygen.

According to the study, hydrogen production was clearly observable after about two hours. Additionally, the nanorods were not subject to the photocorrosion that often causes traditional semiconductor material to fail in minutes.

"The device operated with no hint of failure for many weeks," Moskovits said.

The plasmonic method of splitting water is currently less efficient and more costly than conventional photoprocesses, but if the last century of photovoltaic technology has shown anything, it is that continued research will improve on the cost and efficiency of this new method — and likely in far less time than it took for the semiconductor-based technology, said Moskovits.

"Despite the recentness of the discovery, we have already attained 'respectable' efficiencies. More importantly, we can imagine achievable strategies for improving the efficiencies radically," he said.

Research in this study was also performed by postdoctoral researchers Syed Mubeen and Joun Lee; grad student Nirala Singh; materials engineer Stephan Kraemer; and chemistry professor Galen Stucky.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Power and Electrical Engineering:

nachricht Vortex laser offers hope for Moore's Law
29.07.2016 | University at Buffalo

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>