Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. Researchers Find High Energy Output From Algae-Based Fuel, But 'No Silver Bullet'

11.08.2011
Algae-based fuel is one of many options among the array of possible future energy sources. New University of Virginia research shows that while algae-based transportation fuels produce high energy output with minimal land use, their production could come with significant environmental burdens.

For farmers looking to maximize profits, algae would produce considerably more transportation energy than canola and switch grass for every hectare planted, and can also be grown on poor-quality marginal land that cannot be easily used to grow food crops such as corn, according to a report by Andres F. Clarens and Lisa M. Colosi, both assistant professors of civil and environmental engineering in the U.Va. School of Engineering and Applied Science, and Mark A. White, professor in the McIntire School of Commerce.

From an environmental impact standpoint, however, algae-based fuel has mixed performance, compared to other biomass sources. Algae-based biodiesel production uses more energy – in the form of petroleum-powered processes – than other biofuels. Additionally, algae-based biodiesel and bioelectricity production processes also require substantial amounts of water and emit more greenhouse gases.

The report, "Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation," is available online on the website of Environmental Science and Technology, a leading environmental research journal and will be published in an upcoming print edition. Hagai Nassau and Eleazer P. Resurreccion, civil and environmental engineering graduate students, contributed to the research.

"We're looking at the entire landscape of biofuels, and asking 'What are the options?'" Colosi said.

She hopes the research will inform public policy debates, allowing people to make the best decisions about alternatives to petroleum.

"It comes down to value-driven questions," Colosi said. "Do we value driving long distances in SUVs that require a lot of fuel? If so, we need to look at algae so we can produce as much fuel as possible. If we are concerned about energy use, climate changes and water supply, then we need to think more strongly about how we can best use canola and switch grass."

The U.Va. researchers relied on what is known as a "well-to-wheel" life-cycle assessment of algae-based biofuel and bioelectricity production for transportation fuels. The research began with examining how the source crops are grown and continued through the point of their transformation into useable fuels for vehicles. They expressed energy output of the various biomass sources by showing how many kilometers a car could travel per the amount of energy harvested from a hectare of land.

The current paper builds on the modeling results the U.Va. team reported in a 2010 paper in Environmental Science and Technology. In that work, they looked at the inputs such as fertilizer, water and petroleum power used to produce algae-based biodiesel. They compared this data to the amount of energy produced by other biomass stocks. The current paper accounts for variables throughout the entire production process.

Another important finding in the current paper shows the relative favorability of using biofuels to generate electricity rather than liquid fuels (i.e. biodiesel) for internal combustion engines. The process has a higher energy return than other algae-based biofuels because it involves fewer steps to transform the biomass into a usable energy form. Energy generated in this manner could power electric vehicles, but the authors acknowledge that the limited number of those vehicles currently in use could reduce the overall benefit of bioelectricity for transportation.

For the next phase of their research, the team plans to monetize environmental costs and benefits associated with production of the various bio-fuels.

"Ultimately there is no silver bullet for replacing petroleum as a transportation energy source," Clarens said. "We've seen that alternatives typically come with unforeseen burdens. We saw it with ethanol, and we're seeing it now with shale gas. Our hope is that work like this will help us avoid similar pitfalls if algae-based fuels are ultimately deployed on large scale."

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>