Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transportation Fuels From Woody Biomass Promising Way to Reduce Emissions

03.06.2013
Two processes that turn woody biomass into transportation fuels have the potential to exceed current Environmental Protection Agency requirements for renewable fuels, according to research published in the Forest Products Journal and currently featured on its publications page.
The Environmental Protection Agency's standard for emissions from wood based
transportation fuels requires a 60 percent reduction in greenhouse gas emissions compared to using fossil fuels. The standards don't just concern greenhouse gases generated when biofuel is burned to run vehicles or provide energy: What's required is life-cycle analysis, a tally of emissions all along the growing, collecting, producing and shipping chain.

The special Forest Products Journal issue does just that for energy produced in various ways from woody biomass. For instance, two processes for making ethanol reviewed in the issue – one a gasification process using trees thinned from forests and the other a fermentation process using plantation-grown willows – reduces greenhouse gas emissions by 70 percent or better compared with gasoline. In contrast, producing and using corn ethanol reduces greenhouse gas emissions 24 percent compared to gasoline, according Argonne National Laboratory research published in 2011.

For the publication, researchers from the 17 research institutions that make up the Consortium for Research on Renewable Industrial Materials determined the life-cycle emissions of 15 processes where woody biomass was turned into liquid fuel, burned directly to create heat, steam or electricity, or processed into pellets for burning.

The common advantage of these processes over fossil fuels is that trees growing in replanted forests reabsorb the carbon dioxide emitted when woody biomass burns as fuel in cars or other uses, said Elaine Oneil, a University of Washington research scientist in ecological and forest sciences and director of the consortium. While fossil fuels cause a one-way flow of carbon dioxide to the atmosphere when they burn, forests that are harvested for wood products or fuels and regrown represent a two-way flow, into and back out of the atmosphere.

The processes reviewed have the added advantage of using woody debris not only as a component of fuels but to produce energy needed for manufacturing the biofuel. The fermentation process to produce ethanol, for example, ends up with leftover organic matter that can be burned to produce electricity. Only one-third of the electricity generated by the leftovers is needed to make the ethanol, so two-thirds can go to the power grid for other uses, offsetting the need to burn fossil fuels to produce electricity.

This is among the reasons that ethanol from plantation-grown feedstock using the fermentation process approaches being carbon neutral, that is, during its life cycle as much carbon is removed as is added to the atmosphere, according to Rick Gustafson, UW professor of environmental and forest sciences and a co-author in the special issue.

The researchers looking at the fermentation process also took into account such things as water consumption. They found that the process – which among other things needs water to support the enzymes – uses about 70 percent more water per unit of energy produced than gasoline. A biofuel industry using woody material will be a lot less water intense than today's pulp and paper industry – still, water use should be taken into account when moving from pilot biofuel production to full-scale commercialization, Gustafson said.

"The value of life-cycle analysis is that it gives you information such as the amount of energy you get in relation to how much you put in, how emissions are affected and the impacts to resources such as land and water," Oneil said.

In the U.S. last year, some 15 facilities produced about 20,000 gallons of fuels using cellulosic biomass such as wood waste and sugarcane bagasse, according to a U.S. Energy Information Administration website. The administration estimates this output could grow to more than 5 million gallons in 2013, as operations ramp up at several plants.

In the special issue, the biofuels analyzed came only from forest residues, forest thinnings, wood bits left after manufacturing such things as hardwood flooring or fast-growing plantation trees like willow. That's because, from a greenhouse emissions perspective, it makes no sense to produce biofuels using trees that can be made into long-lived building materials and furniture, said Bruce Lippke, UW professor emeritus of environmental and forest sciences, who oversaw the contents of the special issue.

"Substituting wood for non-wood building materials such as steel and concrete, can displace far more carbon emissions than using such wood for biofuels," Lippke said. "It's another example of how life-cycle analysis helps us judge how to use resources wisely."

The modeling and simulations used for life-cycle analysis in the special Forest Products Journal issue can be used to evaluate other woody materials and biofuel processes in use now or in the future, with the models being refined as more data is collected. The data also will be submitted to the U.S. Life Cycle Inventory Database of the U.S. Department of Energy's National Renewable Energy Laboratory, which has data available for everyone to use on hundreds of products.

###
For more information:
Oneil, 206-543-6859, eoneil@uw.edu
Lippke, 206-543-8684,blippke@uw.edu
Gustafson, 206-543-2790, pulp@u.washington.edu
Suggested websites
--Publications page of Forest Products Journal featuring special issue on biofuels

http://www.forestprod.org/buy_publications/

--Consortium for Research on Renewable Industrial Materials, or CORRIM
http://www.corrim.org/
--Overview "Carbon Emission Reduction Impacts from Alternative Biofuels"
http://www.corrim.org/pubs/articles/2012/FPJ_vol62_num04/07_FPJ-vol62-num04-2012.pdf
--2011 research paper from Argonne National Laboratory concerning corn ethanol
Biomass and Bioenergy journal
http://www.sciencedirect.com/science/article/pii/S0961953411000298
--Overview of U.S. cellulosic biofuel industry, U.S. Energy Information Administration

http://www.eia.gov/todayinenergy/detail.cfm?id=10131

Sandra Hines | Newswise
Further information:
http://www.uw.edu

More articles from Power and Electrical Engineering:

nachricht Agrophotovoltaics Goes Global: from Chile to Vietnam
20.06.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>