Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Transparent Insulating Film Could Enable Energy-Efficient Displays

11.11.2009
Johns Hopkins materials scientists have found a new use for a chemical compound that has traditionally been viewed as an electrical conductor, a substance that allows electricity to flow through it.

By orienting the compound in a different way, the researchers have turned it into a thin film insulator, which instead blocks the flow of electricity, but can induce large electric currents elsewhere.

The material, called solution-deposited beta-alumina, could have important applications in transistor technology and in devices such as electronic books.

The discovery is described in the November issue of the journal Nature Materials and appears in an early online edition.

In his Johns Hopkins materials science lab, Howard E. Katz adjusts probes used for testing electronic devices. Photo by Will Kirk, Homewoodphoto.jhu.edu.

“This form of sodium beta-alumina has some very useful characteristics,” said Howard E. Katz, a professor of materials science and engineering who supervised the research team. “The material is produced in a liquid state, which means it can easily be deposited onto a surface in a precise pattern for the formation of printed circuits. But when it’s heated, it forms a solid, thin transparent film. In addition, it allows us to operate at low voltages, meaning it requires less power to induce useful current. That means its applications could operate with smaller batteries or be connected to a battery instead of a wall outlet.”

The transparency and thinness of the material (the hardened film is only on the order of 100 atoms thick) make it ideal for use in the increasingly popular e-book readers, which rely on see-through screens and portable power sources, Katz said. He added that possible transportation applications include instrument readouts that can be displayed in the windshield of an aircraft or a ground vehicle.

The emergence of sodium beta-alumina as an insulator was a surprising development, Katz said. The compound, known for decades, has traditionally been used to conduct electricity and for this reason has been considered as a possible battery component. The material allows charged particles to flow easily parallel to a two-dimensional plane formed within its distinct atomic crystalline arrangement. “But we found that current does not flow nearly as easily perpendicular to the planes, or in unoriented material,” Katz said. “The material acts as an insulator instead of a conductor. Our team was the first to exploit this discovery.”

The Johns Hopkins researchers developed a method of processing sodium beta-alumina in a way that makes use of this insulation behavior occurring in the form of a thin film. Working with the Johns Hopkins Technology Transfer staff, Katz’s team has filed for international patent protection for their discovery.

The lead author of the Nature Materials paper was Bhola N. Pal, who was a postdoctoral fellow in Katz’s laboratory. In addition to Katz, who is chair of the Department of Materials Science and Engineering in the university’s Whiting School of Engineering, the co-authors were Bal Mukund Dhar, a current doctoral student in the lab, and Kevin C. See, who recently completed his doctoral studies under Katz.

Funding for the research was provided by the U.S. Department of Energy, the U.S. Air Force Office of Scientific Research and the National Science Foundation.

Related links:

Nature Materials Online Article:
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat2560.html
A Nature Materials commentary about the Katz team’s research:
http://www.nature.com/nmat/journal/v8/n11/full/nmat2552.html
Howard E. Katz’s Web page:
http://materials.jhu.edu/index.php/people/faculty/katz
Johns Hopkins Department of Materials Science and Engineering:
http://materials.jhu.edu/
Johns Hopkins Technology Transfer: http://www.techtransfer.jhu.edu/

Phil Sneiderman | EurekAlert!
Further information:
http://www.techtransfer.jhu.edu/
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>