Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Research Team Heading to Europe for Experiments

22.06.2009
A solar energy research team from Valparaiso University’s College of Engineering will return to Switzerland this summer to continue testing the potential of harnessing the sun’s energy for industrial applications. Valpo, a member of the Council on Undergraduate Research, has been pursuing the research project since 2006.

Led by Dr. Robert Palumbo, one of the world’s leading solar energy researchers, Valpo’s team of engineering students will conduct a second round of experiments with a solar reactor used for high temperature solar electrolysis at the Paul Scherrer Institute. Valpo’s research program is funded by a $300,000 National Science Foundation grant, and is studying a process with the potential to make large-scale storage and transportation of the sun’s energy practical.

Derek Leatzow, a mechanical engineering major from Chicago, said he and other team members spent the past year redesigning and improving the majority of the solar reactor’s interior components based upon last summer’s test results. The electrolytic process starts after sunlight heats a crucible inside Valpo’s reactor – a cylindrical device about three-feet long – to between 1,700 and 3,000 degrees Fahrenheit. At that point, zinc oxide inside the crucible separates into oxygen and metallic zinc.

“This summer we expect to gather much more information about how efficiently our reactor makes zinc and whether we get better results if the temperature is higher or if the electrical current is increased,” Leatzow said. “Ultimately, we want to show industry that high temperature solar electrolysis is feasible and whether certain materials will work better than others.”

Leatzow said the improved reactor is expected to yield more zinc from the electrolytic process and also allow more precise data collection.

Leann Matthews, a junior from Fond du Lac, Wis., said that in addition to observing how the reaction changes when the temperature or electrical current is altered, the team also will experiment with different electrolytes and electrodes.

There are two major factors that Matthews says the team wants to measure during its six weeks of testing. The first is the amount of electricity that is added to the reaction compared to the amount of electricity that could be obtained from a zinc fuel cell. The second, she said, is determining the difference in how much solar energy the team puts into the reaction versus the theoretical ideal.

Valpo’s research team is producing zinc in its experiments because the commonly-used metal could be used in fuel cells for the production of electricity. The process thus could be a means by which solar energy is stored as chemical energy in the form of zinc, allowing it to be transported and used at any time. The higher the temperature during electrolysis, the larger the amount of solar energy that can be substituted for the electricity needed to convert zinc oxide into metallic zinc.

Each experiment takes a full day to conduct, and the team aims to complete eight or nine experiments at Paul Scherrer Institute, one of the world’s leading solar energy research facilities. Joining Leatzow and Dr. Palumbo in Switzerland are senior mechanical engineering major Jackie Kondratko and mechanical engineering major and May graduate Robert Schroeder, both of Granger. Matthews will provide support from Valpo during testing.

“While high temperature solar electrolysis is too expensive to be practical on an industrial scale right now, our research is advancing scientists’ understanding of the process,” Leatzow said. “Hopefully we’ll reach the point where it is realistic financially, and society can also benefit from the reduced environmental impact that’s gained by using solar energy rather than fossil fuels.”

Leatzow, who graduated in May, said he’s learned a great deal from his research experience and is considering a career in green technology.

“This project has definitely sparked my interest in alternative energies to the point that I’m considering going to graduate school to pursue that,” Leatzow said.

Matthews and Kondratko, along with other engineering students, will continue working on Valpo’s solar energy research during the coming year. If Valpo’s research team accomplishes its experiment goals this summer, next year’s work will include further development of an industrial scale model for high temperature solar electrolysis.

Matthews’ career goals also include working in an alternative energy field that, like Valpo’s solar energy project, could help reduce the world’s reliance on fossil fuels.

“In addition to this solar energy research, I’m also really interested in the automobile industry and the potential for making more environmentally sustainable vehicles that address the problems we’re seeing with global warming,” Matthews said. “There’s a lot more work that needs to be done in that area and I’d enjoy the opportunity to be part of that.”

Nancy Hensel | Newswise Science News
Further information:
http://www.cur.org

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>