Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar cells: A clear choice

15.03.2012
Dye-sensitized solar cells that use carbon nanotube thin films as transparent electrodes offer significant cost savings

Solar energy is one of the most promising forms of renewable energy, but the high cost of conventional solar cells has so far limited its popularity.


Carbon nanotube electrodes. The use of carbon nanotubes has a significant cost advantage. However, in earlier designs (left), the carbon nanotubes degraded through chemical processes (e-: electrons, I3-: ions in the liquid). Using a thin protective layer of titanium oxide now stabilizes the nanotubes (right), increasing the performance of these cells. Copyright : 2011 AIP

To increase the competitiveness of solar energy, scientists have turned to the development of dye-sensitized solar cells — solar cells that use low-cost organic dyes and titanium dioxide (TiO2) nanoparticles in place of expensive semiconductor and rare earth elements to absorb sunlight.

Zhaohong Huang at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now reduced the cost of dye-sensitized solar cells even further by replacing indium tin oxide (ITO) — the standard material for transparent electrodes — with carbon nanotubes.

A typical dye-sensitized solar cell comprises a porous layer of TiO2 nanoparticles immersed in an organic dye. The dye absorbs the sunlight and converts the energy into electricity, which flows into the TiO2 nanoparticles. The sun-facing side of the solar cell is usually covered with a transparent electrode that carries the charge carriers away from the TiO2 and out of the solar cell. “Unfortunately, ITO electrodes are brittle and crack easily,” says Huang. “They are also expensive and could incur up to 60% of the total cost of the dye-sensitized solar cell.”

Huang and his team therefore replaced the ITO electrode with a thin film of carbon nanotubes. Carbon nanotubes conduct electricity and are almost transparent, flexible and strong, which make them the ideal material for transparent electrodes. The only drawback is that photo-generated charge carriers in the nanotube may recombine with ions in the dye, which reduces the power conversion efficiency of the solar cell.

To overcome this problem, Huang and his team placed a TiO2 thin film in between the carbon nanotube thin film and the porous layer. They found that the performance of dye-sensitized solar cells with TiO2 thin film was significantly better than those without. However, they also found that the solar conversion efficiency of their new dye-sensitized solar cells was only 1.8%, which is lower than that of conventional solar cells using ITO electrodes. This is due to the higher electrical resistances and reduced optical transparency of the carbon nanotube films, which limits the amount of sunlight entering the cell.

“We are now studying different ways to enhance the conductivity and transparency of the films,” says Huang. “Furthermore, we are planning to replace the bottom platinum electrode with carbon nanotube thin film to reduce the cost of dye-sensitized solar cells further.”

If successful, the results could have a great impact on the cost and stability of dye-sensitized solar cells.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Singapore Institute of Manufacturing Technology

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>