Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Charger Controller Simplifies Electric Vehicle Recharging

01.05.2009
PNNL's Smart Charger Controller simplifies electric vehicle recharging, protects the grid and saves consumers money; device automatically activates the vehicle's battery to recharge at times of least stress on the grid.

Electric vehicle owners can plug in their cars and forget about them, knowing they'll get the cheapest electricity available and won't crash the grid – using a new technology called the Smart Charger Controller.

Developed at the Department of Energy’s Pacific Northwest National Laboratory, the controller automatically recharges electric vehicles during times of least cost to the consumer and lower demand for power. Widespread use of these devices could help advance a smart power grid.

Electric vehicles will ultimately reduce the nation’s dependency on oil. While the new vehicles will serve as an additional source of power demand, they also could contribute to an even “smarter” grid if equipped with controller technology.

“If a million owners plug in their vehicles to recharge after work, it could cause a major strain on the grid,” said PNNL engineer Michael Kintner-Meyer. “The Smart Charger Controller could prevent those peaks in demand from plug-in vehicles and enable our existing grid to be used more evenly.”

That efficiency translates to a more stable grid and cheaper power.

“Using the device could save up to $150 a year for electric vehicle owners who pay based on when they charge their vehicle,” Kintner-Meyer said.

How it Works

Electric vehicles will become widely available starting in 2011. The current Administration supports a goal of one million electric vehicles on the road by 2015. A previous PNNL study showed that America’s existing power grid could meet the needs of about 70 percent of all U.S. light-duty vehicles if battery charging was managed to avoid new peaks in electricity demand.

The Smart Charger Controller does just that. Owners program the controller to charge at a specific time of day or night or at a set price point. The controller uses a low-range wireless technology to communicate with the power grid and determine the best and cheapest time to recharge vehicles. By charging vehicles during off-peak times, the controller saves consumers money.

Previous PNNL studies with household appliances show that “smart” technologies also save the grid from brown-outs with little impact to the consumer. Grid Friendly™ technology inside the Smart Charger Controller senses stress conditions on the grid. When the grid says more power is needed, the controller can temporarily stop charging the vehicle until the stress subsides.

This instant reduction in charging load, multiplied on a large scale with many vehicles, could serve as a shock absorber for the grid. The technology would relieve load instantly and give grid operators time to bring new power generation sources on line to stabilize the grid – a process that usually takes several minutes.

The Road Ahead is Now

With more electric vehicles on the horizon, road-ready, smart charging technology can be used now, according to Kintner-Meyer. Advancing technologies like the Smart Charger Controller today will enable the new generation of electric vehicles to be “smarter” once they’re available commercially, he noted.

Video: Managing Demand for Electricity
Video: Smart Charger Controller: What a user will see during a charging cycle
(http://www.youtube.com/user/PNNLgov)
Business inquiries should be directed to smartcharger@pnl.gov. This work is supported by the Department of Energy’s Office of Electricity Delivery and Energy Reliability.

Pacific Northwest National Laboratory (www.pnl.gov) is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,200 staff, has a $850 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Annie Haas | Newswise Science News
Further information:
http://www.pnl.gov
http://www.pnl.gov/news/release.asp?id=365

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>