Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Charger Controller Simplifies Electric Vehicle Recharging

01.05.2009
PNNL's Smart Charger Controller simplifies electric vehicle recharging, protects the grid and saves consumers money; device automatically activates the vehicle's battery to recharge at times of least stress on the grid.

Electric vehicle owners can plug in their cars and forget about them, knowing they'll get the cheapest electricity available and won't crash the grid – using a new technology called the Smart Charger Controller.

Developed at the Department of Energy’s Pacific Northwest National Laboratory, the controller automatically recharges electric vehicles during times of least cost to the consumer and lower demand for power. Widespread use of these devices could help advance a smart power grid.

Electric vehicles will ultimately reduce the nation’s dependency on oil. While the new vehicles will serve as an additional source of power demand, they also could contribute to an even “smarter” grid if equipped with controller technology.

“If a million owners plug in their vehicles to recharge after work, it could cause a major strain on the grid,” said PNNL engineer Michael Kintner-Meyer. “The Smart Charger Controller could prevent those peaks in demand from plug-in vehicles and enable our existing grid to be used more evenly.”

That efficiency translates to a more stable grid and cheaper power.

“Using the device could save up to $150 a year for electric vehicle owners who pay based on when they charge their vehicle,” Kintner-Meyer said.

How it Works

Electric vehicles will become widely available starting in 2011. The current Administration supports a goal of one million electric vehicles on the road by 2015. A previous PNNL study showed that America’s existing power grid could meet the needs of about 70 percent of all U.S. light-duty vehicles if battery charging was managed to avoid new peaks in electricity demand.

The Smart Charger Controller does just that. Owners program the controller to charge at a specific time of day or night or at a set price point. The controller uses a low-range wireless technology to communicate with the power grid and determine the best and cheapest time to recharge vehicles. By charging vehicles during off-peak times, the controller saves consumers money.

Previous PNNL studies with household appliances show that “smart” technologies also save the grid from brown-outs with little impact to the consumer. Grid Friendly™ technology inside the Smart Charger Controller senses stress conditions on the grid. When the grid says more power is needed, the controller can temporarily stop charging the vehicle until the stress subsides.

This instant reduction in charging load, multiplied on a large scale with many vehicles, could serve as a shock absorber for the grid. The technology would relieve load instantly and give grid operators time to bring new power generation sources on line to stabilize the grid – a process that usually takes several minutes.

The Road Ahead is Now

With more electric vehicles on the horizon, road-ready, smart charging technology can be used now, according to Kintner-Meyer. Advancing technologies like the Smart Charger Controller today will enable the new generation of electric vehicles to be “smarter” once they’re available commercially, he noted.

Video: Managing Demand for Electricity
Video: Smart Charger Controller: What a user will see during a charging cycle
(http://www.youtube.com/user/PNNLgov)
Business inquiries should be directed to smartcharger@pnl.gov. This work is supported by the Department of Energy’s Office of Electricity Delivery and Energy Reliability.

Pacific Northwest National Laboratory (www.pnl.gov) is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,200 staff, has a $850 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Annie Haas | Newswise Science News
Further information:
http://www.pnl.gov
http://www.pnl.gov/news/release.asp?id=365

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>