Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silver Nanoparticles Give Polymer Solar Cells A Boost

07.10.2009
Small bits of metal may play a new role in solar power.

Researchers at Ohio State University are experimenting with polymer semiconductors that absorb the sun’s energy and generate electricity. The goal: lighter, cheaper, and more-flexible solar cells.

They have now discovered that adding tiny bits of silver to the plastic boosts the materials’ electrical current generation.

Paul Berger, professor of electrical and computer engineering and professor of physics at Ohio State, led the team that reported the results online in the journal Solar Energy Materials and Solar Cells.

Berger and his team measured the amount of light absorbed and the current density -- the amount of electrical current generated per square centimeter -- generated by an experimental solar cell polymer with and without silver nano-particles.

Without silver, the material generated 6.2 milli-amps per square centimeter. With silver, it generated 7.0 -- an increase of almost 12 percent.

The small silver particles help the polymer capture a wider range of wavelengths of sunlight than would normally be possible, which in turn increases the current output, Berger explained.

He added that with further work, this technology could go a long way toward making polymer solar cells commercially viable.

“The light absorption of polymer solar cells is inadequate today,” he said. “The top-performing materials have an overall efficiency of about 5 percent. Even with the relatively low production cost of polymers compared to other solar cell materials, you’d still have to boost that efficiency to at least 10 percent to turn a profit. One way to do that would be to expand the range of wavelengths that they absorb. Current polymers only absorb a small portion of the incident sunlight.”

The new fabrication technique involves encasing each silver particle in an ultra-thin polymer layer -- a different polymer than the light-absorbing polymer that makes up the solar cell -- before depositing them below the light-absorbing polymer; the coating prevents the silver particles from clumping, but also allows them to self-assemble into a dense and regular mosaic pattern that Berger believes is key to enhancing the light absorption.

Even though the silver particles allow the material to produce 12 percent more electrical current, that improvement may not translate directly into a 12 percent increase in overall solar cell efficiency. Many factors effect efficiency, and some energy can be lost.

Still, the silver nanoparticles could boost the overall efficiency of virtually any kind of solar cell -- those made from polymers or other semiconductor materials. Berger and his colleagues are now studying other nanoparticle formulations that would increase that number further.

“By changing the organic coating, we could change the spacing of the particles and alter the size of each particle. By fine-tuning the mosaic pattern, we could move the enhanced absorption to different wavelengths, and thus get even more of an improvement. I think we can get several percent more,” he said.

The semiconductor polymer captures more light because the metal nanoparticles absorb light that would normally be wasted. This extra light energy excites electrons in the metal particles, creating electron waves called plasmons -- a cross between plasma and photons. The plasmons dance across the surface, depositing energy inside the solar cell that would otherwise be lost.

Researchers have been looking for a way to generate plasmons in solar cells without greatly increasing the difficulty and cost of manufacture. Given that his technique uses simple fabrication equipment at room temperature, and given that the silver particles self-assemble based only on the chemistry of the coating, Berger feels that any laboratory could easily make use of this finding.

“Not only do week seek better efficiency, but also lower costs too,” he added.
His co-authors on the paper include student Woo-Jun Yoon, who is conducting this work for his doctoral degree; Fernando Teixeira, associate professor of electrical and computer engineering; and Jiwen Liu, Thirumalai Durasisamy, Rao Revur, and Suvankar Sengupa -- all of MetaMateria Partners, LLC, formerly of Columbus, Ohio, which coated the silver nano-particles with polymer.

This work was funded by the Wright Center for Photovoltaics Innovation and Commercialization, and the Institute for Materials Research at Ohio State.

Contact: Paul R. Berger, (614) 247-6235; pberger@ieee.org

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>