Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silver Nanoparticles Give Polymer Solar Cells A Boost

Small bits of metal may play a new role in solar power.

Researchers at Ohio State University are experimenting with polymer semiconductors that absorb the sun’s energy and generate electricity. The goal: lighter, cheaper, and more-flexible solar cells.

They have now discovered that adding tiny bits of silver to the plastic boosts the materials’ electrical current generation.

Paul Berger, professor of electrical and computer engineering and professor of physics at Ohio State, led the team that reported the results online in the journal Solar Energy Materials and Solar Cells.

Berger and his team measured the amount of light absorbed and the current density -- the amount of electrical current generated per square centimeter -- generated by an experimental solar cell polymer with and without silver nano-particles.

Without silver, the material generated 6.2 milli-amps per square centimeter. With silver, it generated 7.0 -- an increase of almost 12 percent.

The small silver particles help the polymer capture a wider range of wavelengths of sunlight than would normally be possible, which in turn increases the current output, Berger explained.

He added that with further work, this technology could go a long way toward making polymer solar cells commercially viable.

“The light absorption of polymer solar cells is inadequate today,” he said. “The top-performing materials have an overall efficiency of about 5 percent. Even with the relatively low production cost of polymers compared to other solar cell materials, you’d still have to boost that efficiency to at least 10 percent to turn a profit. One way to do that would be to expand the range of wavelengths that they absorb. Current polymers only absorb a small portion of the incident sunlight.”

The new fabrication technique involves encasing each silver particle in an ultra-thin polymer layer -- a different polymer than the light-absorbing polymer that makes up the solar cell -- before depositing them below the light-absorbing polymer; the coating prevents the silver particles from clumping, but also allows them to self-assemble into a dense and regular mosaic pattern that Berger believes is key to enhancing the light absorption.

Even though the silver particles allow the material to produce 12 percent more electrical current, that improvement may not translate directly into a 12 percent increase in overall solar cell efficiency. Many factors effect efficiency, and some energy can be lost.

Still, the silver nanoparticles could boost the overall efficiency of virtually any kind of solar cell -- those made from polymers or other semiconductor materials. Berger and his colleagues are now studying other nanoparticle formulations that would increase that number further.

“By changing the organic coating, we could change the spacing of the particles and alter the size of each particle. By fine-tuning the mosaic pattern, we could move the enhanced absorption to different wavelengths, and thus get even more of an improvement. I think we can get several percent more,” he said.

The semiconductor polymer captures more light because the metal nanoparticles absorb light that would normally be wasted. This extra light energy excites electrons in the metal particles, creating electron waves called plasmons -- a cross between plasma and photons. The plasmons dance across the surface, depositing energy inside the solar cell that would otherwise be lost.

Researchers have been looking for a way to generate plasmons in solar cells without greatly increasing the difficulty and cost of manufacture. Given that his technique uses simple fabrication equipment at room temperature, and given that the silver particles self-assemble based only on the chemistry of the coating, Berger feels that any laboratory could easily make use of this finding.

“Not only do week seek better efficiency, but also lower costs too,” he added.
His co-authors on the paper include student Woo-Jun Yoon, who is conducting this work for his doctoral degree; Fernando Teixeira, associate professor of electrical and computer engineering; and Jiwen Liu, Thirumalai Durasisamy, Rao Revur, and Suvankar Sengupa -- all of MetaMateria Partners, LLC, formerly of Columbus, Ohio, which coated the silver nano-particles with polymer.

This work was funded by the Wright Center for Photovoltaics Innovation and Commercialization, and the Institute for Materials Research at Ohio State.

Contact: Paul R. Berger, (614) 247-6235;

Pam Frost Gorder | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>