Fibre laser quietly revolutionizes the world

Its advantages are obvious: due to the fibre design the beam quality is close to perfect, hence best possible focus ability even with very long operating distances is ensured.

Flexible fibre geometry and vibration insensitivity as well as high efficiency and low operating costs convincingly allow an uncomplicated integration in industrial, automated production processes. Compared to conventional materials processing, the laser machining entails positive features, namely minor limitations regarding processable materials, non-contact treatment and high beam scanning speed as well as maximum accuracy.

A diversified consortium on the European level will work together to set new standards in the field of fibre laser technology. Main objective of the nearly 16 m. EUR EU-project LIFT – Leadership in Fibre laser Technologies, – starting in September 2009, is the offensive consolidation of Europe's scientific, engineering and production-related leadership position. Coming from 9 different countries, expertises of 15 decisive companies, among them two Fraunhofer institutes, three universities and one non-profit-organization joined and constitute a strong consortium.

Managed by the Fraunhofer-Institute for Material and Beam Technology IWS Dresden, laser suppliers, producers of optical and opto-electronic components, manufacturers of photonic fibres and fundamental researchers as well as application engineers will work on several goals.

The consortium will focus on the development of fibre-based short pulse lasers for so called gentle “cold treatment” of materials, in particular for special ceramic-materials, being of increasing interest in various areas. Another key role plays the progression of ultra reliable, pulsed high-performance-fibre laser systems which will significantly enhance processes like remote-laser cutting or welding in their efficiency.

A specific challenge within the medical sector will be the realization of a three-colour fibre laser. The aim is to develop a narrowband fibre laser system which is continuously emitting VIS radiation at wavelengths specifically chosen to treat various symptoms like acne or retina indisposing. Furthermore, this laser system will permit to combat certain types of cancer via photodynamic therapy.

Additionally, the project addresses the sector of renewable energies. As the technical efficiency of photoelectric cells reaches its upper limit, the consortium will focus on the improvement of individual production steps in the manufacturing of solar modules. Pulsed high performance fibre-laser systems in combination with intelligent remote-beam delivery components will allow the up to now very intricate large area processing of solar substrates.

Almost unnoticed by the end user, the fibre laser proceeds on its way to a crucial component of Europe's high technology and so quietly revolutionizes the production and medical technology of tomorrow.

Your contact partner for further information:

Fraunhofer Institute for Material and Beam Technology IWS Dresden
(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)
01277 Dresden, Winterbergstr. 28
LIFT Coordinator
Dr. Udo Klotzbach
Phone: +49 351 83391 – 3252
Fax: +49 351 83391 – 3300
E-mail: udo.klotzbach@iws.fraunhofer.de
EU Research Coordination
Anja Strehle
Phone: +49 351 83391 – 3438
Fax: +49 351 83391 – 3300
E-mail: anja.strehle@iws.fraunhofer.de
Press and Public relations
Dr. Ralf Jäckel
Telefon: +49 351 83391 3444
Telefax: +49 351 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors