Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silicon-Air Battery: Non-stop Power for Thousands of Hours

Scientists at the Technion-Israel Institute of Technology have developed a new, environmentally friendly silicon-air battery capable of supplying non-stop power for thousands of hours without needing to be replaced. The findings are published in the October 2009 issue of Electrochemistry Communications.

Created from oxygen and silicon (the second most plentiful element in the earth’s crust), such batteries would be lightweight, have an unlimited shelf life, and have a high tolerance for both humid and extremely dry conditions. Potential uses include medical applications (for example, powering diabetic pumps or hearing aids), sensors and microelectronics structured from silicon.

“Silicon-air batteries will be used like the ones already in use today,” says lead researcher Prof. Yair Ein-Eli of the Department of Materials Engineering. “But by using silicon – a safe, non-toxic, stable and more common material – we can create very lightweight batteries with infinite shelf life and high energy capacity.”

Silicon-air batteries would provide significant savings in cost and weight because they lack the built-in cathode of conventional batteries. The cathode in silicon-air (and metal-air) batteries is the oxygen that comes from the atmosphere through the membrane.

Prof. Ein-Eli estimates that in three to four years, silicon-air batteries can be made more powerful, as well as rechargeable. In 10 years, he says, it may be possible to build “electric car batteries made from silicon that will turn into
sand that would be recycled into silicon and then into power again."

According to Prof. Ein-Eli, lightweight, long-lasting metal-air batteries are already used in hearing aids. There have also been attempts, he says, to upgrade such batteries for use in electric cars and portable electronic devices, and that interest in the matter was sparked recently when Toyota and Panasonic began joint efforts to adapt the zinc-air battery for future electronic cars.

The silicon-air battery research by Prof. Ein-Eli was financed by the Bi-National Research Foundation (BSF). Also involved in the research were Dr. David Starosvetsky and graduate student Gil Cohen from the Technion, Prof. Digby Macdonald from Penn State University, and Prof. Rika Hagiwara of Kyoto University.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with offices around the country.

Kevin Hattori | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>