Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotary Valve Could Help Propel Craft to Mars One Day

05.04.2013
A rotary fuel delivery valve developed by a University of Alabama in Huntsville team led by Dr. James Blackmon just might help us get manned space flights out of our immediate neighborhood one day, and he says it could have practical terrestrial applications.

Dr. Blackmon, a principal research engineer at the university’s Propulsion Research Center, figures that to travel to places like Mars and beyond we’ll first have to decide what kind of fuel delivery system we’ll use to feed the rocket engines and then we’ll have to determine how we’re going to rebuild or maintain that system during long stays in space. That’s where the new valve comes in.


Michael Mercier / UAHuntsville

Dr. James Blackmon in his office with plastic models of the rotary valve made with a 3-D printer and a stainless steel version.

“There are two primary propellant feed systems, a pressurized system and a turbo pump system,” he said. The pressurized system uses tank pressure to deliver fuel. “These are fine as long as the system uses less than 300 psi pressure.” The turbo pump system uses an exhaust gas generator to power the pump. “That works up to 3,000 psi and the higher pressure gives you higher performance.”

A third system known as sequential pumping lies between those two and may be best suited for long-distance travel. In that configuration, three fuel tanks are pressurized in sequential rotation from a main tank. As the first tank is about to be expended, valves switch from it to the second tank, and then subsequently to the third tank, then back to the first tank, and so on. Tanks not being used to fire the engine are being recharged in rotation from the main tank.

“This system gives you both high pressure and fail operational ability,” Dr. Blackmon says. Rather than redundancy, where parts are duplicated so new ones can take over for failed ones, fail operational ability means that even if components in the system fail, the engine will continue to operate.

“Rocket systems are typically designed so they can sustain one failure and be safe, but to have fail operational ability is great because you don’t have to lose your mission” Dr. Blackmon said. “It is very cheap, very reliable and it gives you the same delivered payload as a turbo pump.”

The sequential system has a three to one advantage because of its lower weight, lower cost and greater reliability, but if there’s one drawback to it, it’s the valves.

“Valves are often the source of trouble in spaceflight,” Dr. Blackmon said. “You have these plunger valves slamming open or slamming closed, or ball valves clunking full open and clunking full closed.”

That’s a lot of wear and tear over time, and here is where the new rotary valve excels. It uses a mechanism operated by one of two redundant motors to turn a shaft and slide a configured recess to a port, opening that port for either fuel delivery or recharge. One valve can control filling and emptying of all three rotational fuel tanks in the sequential system, and it can replace multiple older style valves with a device that is lower weight, lower cost and more reliable.

“You can do it with standard valves but we think it’s better to do it with this because a standard valve is so difficult to repair,” Dr. Blackmon said. When it comes time for service, the rotational valve is an easy fix.

“You can use a Crescent wrench and take it apart,” said Dr. Blackmon. “It uses simple tools to fix it, and you can do it in space. If you’re going to Mars and an astronaut had to fix it, you could fix it easily with a valve repair kit without having to remove the valve. You just block it off and fix it.”

Two 3-D printed plastic rotary valve prototypes and a milled stainless steel prototype reside in Dr. Blackmon’s office, and he uses them to illustrate its operation.

“We can change the flow rate in a controlled way by the contours in the flow path and also by the rate at which you rotate the valve,” he said. “That way, as the first tank is tailing off, you can gradually increase the second tank for smooth operation. You’re not slamming valves open and closed, and it makes it much smoother in operation.”

The valve was developed and tested using just $5,000 gained as part of the Space Act Agreement initiatives for development, engineering and testing of design concepts. The money allowed former UAHuntsville graduate students David Eddleman and Chris Morton to work on design and testing in conjunction with James Richard of the Engineering Directorate at Marshall Space Flight Center. Eddleman is now an MSFC employee. MSFC testing facilities were used to test and prove the valve’s operation, as well as facilities at UAHuntsville.

Cheaper, lighter weight, dependable and easy to fix. But will it ever fly?

“That’s a very good question,” Dr. Blackmon said. “The problem is that it’s very tough to get technical funding to develop a new idea, because what we have right now works. What we tried to do in testing was to demonstrate that the rotary valve does work like we said it will.”

For now, he’s also looking at uses for the valve in industrial flow control. ”It might have applications in industry,” Dr. Blackmon said, “if they want a durable valve in the field that’s easy to fix, where you can keep the valve in place while you fix it.”

Jim Steele | Newswise
Further information:
http://www.uah.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>