Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make new electronics -- with a twist

24.11.2008
They've made electronics that can bend. They've made electronics that can stretch.

And now, they've reached the ultimate goal -- electronics that can be subjected to any complex deformation, including twisting.

Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern University's McCormick School of Engineering and Applied Science, and John Rogers, the Flory-Founder Chair Professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign, have improved their so-called "pop-up" technology to create circuits that can be twisted. Such electronics could be used in places where flat, unbending electronics would fail, like on the human body.

Their research is published online by the Proceedings of the National Academy of Sciences (PNAS).

Electronic components historically have been flat and unbendable because silicon, the principal component of all electronics, is brittle and inflexible. Any significant bending or stretching renders an electronic device useless.

Huang and Rogers developed a method to fabricate stretchable electronics that increases the stretching range (as much as 140 percent) and allows the user to subject circuits to extreme twisting. This emerging technology promises new flexible sensors, transmitters, new photovoltaic and microfluidic devices, and other applications for medical and athletic use.

The partnership -- where Huang focuses on theory, and Rogers focuses on experiments -- has been fruitful for the past several years. Back in 2005, the pair developed a one-dimensional, stretchable form of single-crystal silicon that could be stretched in one direction without altering its electrical properties; the results were published by the journal Science in 2006. Earlier this year they made stretchable integrated circuits, work also published in Science.

Next, the researchers developed a new kind of technology that allowed circuits to be placed on a curved surface. That technology used an array of circuit elements approximately 100 micrometers square that were connected by metal "pop-up bridges."

The circuit elements were so small that when placed on a curved surface, they didn't bend -- similar to how buildings don't bend on the curved Earth. The system worked because these elements were connected by metal wires that popped up when bent or stretched. The research was the cover article in Nature in early August.

In the research reported in PNAS, Huang and Rogers took their pop-up bridges and made them into an "S" shape, which, in addition to bending and stretching, have enough give that they can be twisted as well.

"For a lot of applications related to the human body -- like placing a sensor on the body -- an electronic device needs not only to bend and stretch but also to twist," said Huang. "So we improved our pop-up technology to accommodate this. Now it can accommodate any deformation."

Huang and Rogers now are focusing their research on another important application of this technology: solar panels. The pair published a cover article in Nature Materials this month describing a new process of creating very thin silicon solar cells that can be combined in flexible and transparent arrays.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>