Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make new electronics -- with a twist

24.11.2008
They've made electronics that can bend. They've made electronics that can stretch.

And now, they've reached the ultimate goal -- electronics that can be subjected to any complex deformation, including twisting.

Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern University's McCormick School of Engineering and Applied Science, and John Rogers, the Flory-Founder Chair Professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign, have improved their so-called "pop-up" technology to create circuits that can be twisted. Such electronics could be used in places where flat, unbending electronics would fail, like on the human body.

Their research is published online by the Proceedings of the National Academy of Sciences (PNAS).

Electronic components historically have been flat and unbendable because silicon, the principal component of all electronics, is brittle and inflexible. Any significant bending or stretching renders an electronic device useless.

Huang and Rogers developed a method to fabricate stretchable electronics that increases the stretching range (as much as 140 percent) and allows the user to subject circuits to extreme twisting. This emerging technology promises new flexible sensors, transmitters, new photovoltaic and microfluidic devices, and other applications for medical and athletic use.

The partnership -- where Huang focuses on theory, and Rogers focuses on experiments -- has been fruitful for the past several years. Back in 2005, the pair developed a one-dimensional, stretchable form of single-crystal silicon that could be stretched in one direction without altering its electrical properties; the results were published by the journal Science in 2006. Earlier this year they made stretchable integrated circuits, work also published in Science.

Next, the researchers developed a new kind of technology that allowed circuits to be placed on a curved surface. That technology used an array of circuit elements approximately 100 micrometers square that were connected by metal "pop-up bridges."

The circuit elements were so small that when placed on a curved surface, they didn't bend -- similar to how buildings don't bend on the curved Earth. The system worked because these elements were connected by metal wires that popped up when bent or stretched. The research was the cover article in Nature in early August.

In the research reported in PNAS, Huang and Rogers took their pop-up bridges and made them into an "S" shape, which, in addition to bending and stretching, have enough give that they can be twisted as well.

"For a lot of applications related to the human body -- like placing a sensor on the body -- an electronic device needs not only to bend and stretch but also to twist," said Huang. "So we improved our pop-up technology to accommodate this. Now it can accommodate any deformation."

Huang and Rogers now are focusing their research on another important application of this technology: solar panels. The pair published a cover article in Nature Materials this month describing a new process of creating very thin silicon solar cells that can be combined in flexible and transparent arrays.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>