Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Begin Testing of Promising New Nanomaterial for Hydrogen Storage

15.09.2011
Scientists at Rensselaer Polytechnic Institute are working to optimize a promising new nanomaterial called nanoblades for use in hydrogen storage.

During their testing of the new material, they have discovered that it can store and release hydrogen extremely fast and at low temperatures compared to similar materials. Another important aspect of the new material is that it is also rechargeable. These attributes could make it ideal for use in onboard hydrogen storage for next-generation hydrogen or fuel cell vehicles.

The findings on the performance of the nanoblades are published in the September 2011 edition of The International Journal of Hydrogen Energy in an article titled “Low-temperature cycling of hydrogenation-dehydrogenation of Pd-decorated Mg nanoblades.” The research is sponsored by the National Science Foundation.

The scientists created the magnesium-based nanoblades for the first time in 2007. Unlike three-dimensional nanosprings and rods, nanoblades are asymmetric. They are extremely thin in one dimension and wide in another dimension, creating very large surface areas. They also are spread out with up to one micron in between each blade.

In order to store hydrogen, a large surface area with space in between nanostructures is needed to provide room for the material to expand as more hydrogen atoms are stored. The vast surface area and ultrathin profile of each nanoblade, coupled with the spaces between each blade, could make them ideal for this application, according to Gwo-Ching Wang, professor of physics, applied physics, and astronomy at Rensselaer.

To create the nanoblades, the researchers use oblique angle vapor deposition. This fabrication technique builds nanostructures by vaporizing a material — magnesium in this case — and allowing the vaporized atoms to deposit on a surface at an oblique angle. The finished material is then decorated with a metallic catalyst to trap and store hydrogen. For this research, the nanoblades were coated with palladium.

In their most recent paper, the researchers report on their tests of the nanoblades’ performance. Understanding how the material responds to hydrogen over time is essential to improving the material for future use in hydrogen vehicles, according to postdoctoral researcher and lead author of the new paper Yu Liu.

“The requirements from the Department of Energy are very challenging for existing hydrogen storage technology, particularly when it comes to new energy storage materials for onboard hydrogen storage,” said Liu. “All new materials must operate at low temperatures, desorb hydrogen quickly, be cost efficient, and be recyclable.”

Their work with nanoblades is already showing promise in all these areas, according to Wang and Liu.

What they found is that the nanoblades began releasing hydrogen at 340 degrees K (approximately 67 degrees Celsius). When the temperature was increased slightly to 373 K (100 degrees C), the hydrogen stored in the nanoblades was released in just 20 minutes. Many other materials require more than double that temperature to operate at that rate, according to Liu.

They also found that the nanoblades are recyclable. This means that they can be recharged after hydrogen release and used over and over. Such reusability is essential for practical applications.

Using a technique called reflection high-energy electron diffraction (RHEED) and temperature programmed desorption (TPD) — which are equipped onto an integrated ultrahigh vacuum system with a combination of a high-pressure reaction cell and a thin-film deposition chamber — they found that the current nanoblades can go through more than 10 cycles of hydrogen absorption and release.

The RHEED technique is different from other processes, such as X-ray diffraction, because it monitors the near surface structure, phase, and grain size of the material as it changes. Tracking the surface evolution of the material provides insight into how the structure evolves over time.

Using RHEED, they found that over time the catalyst becomes poisoned and the magnesium reacts with oxygen. This causes oxidation, which ultimately degrades the material causing both morphological and chemical changes to the material.

They will now work to optimize the material with different catalysts and polymer protective coatings to improve performance and increase the number of cycles that the material can go through without degradation.

“The next steps are to improve recyclability,” Wang said. “We have found the root cause of the degradation of the material; now we can begin to improve the material.”

Wang and Liu were joined in the research by Professor of Physics, Applied Physics, and Astronomy Toh-Ming Lu and doctoral student Liang Chen. This experimental work received theoretical insights provided by the Gail and Jeffrey L. Kodosky ’70 Senior Constellation Professor of Physics, Information Technology, and Entrepreneurship Shengbai Zhang and doctoral student Wieyu Xie.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>