Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research maps the city's heat

14.05.2012
Steel – the traditional industry for which the UK city of Sheffield is so well known – could help provide a green alternative for heating the city's homes and businesses, alongside other renewable energy sources.

Experts from the University of Sheffield's Faculty of Engineering believe that the many steel plants located just outside the city centre could be connected to Sheffield's existing district heating network to provide an extra 20 MW of thermal energy, enough to heat around 2,000 homes.

"It actually costs the steel plants to reduce the temperature of the flue gas and to cool the water used during steel manufacture. Recovering this heat and transferring it to the district heating network reduces the cost of heat production, improves energy efficiency and is beneficial to the environment, making a 'win, win' situation for the steelworks and the city," says Professor Jim Swithenbank, who played a key role in developing the first phase of Sheffield's district heating system in late 1970s.

Sheffield already has the largest district heating system in the UK, powered through an energy recovery facility that burns the city's non-recyclable waste. Each year this generates 21 MW of electricity, enough to power 22,000 homes, and 60 MW of thermal energy in the form of super-heated steam, which is pumped around the city in a 44 km network of underground pipes. This provides space heating and hot water to over 140 public buildings and 3,000 homes across the city, reducing the city's CO2 emissions by 21,000 tonnes a year.

Engineers from the University's SUWIC Research Centre (Department of Chemical and Biological Engineering) have mapped out a possible expansion of the network which could reduce Sheffield's annual CO2 emissions by a further 80,000 tonnes.

In the study funded by the UK Engineering and Physical Sciences Research Council (EPSRC), the researchers used digital mapping software (GIS) to identify areas of high energy demand against potential new energy sources, such as the steel works and a new biomass plant currently under construction on the site of a former coal-fired power station.

This enabled them to assess where expansion of the network would be most advantageous. Their findings are published today (May 14) in the Journal of Energy Conversion and Management.

District heating, particularly using waste as a fuel, can provide cost-effective and low-carbon energy to local populations, without exposure to the fluctuations of energy markets.

Such systems are currently rare in the UK, although widely used throughout the rest of the world. Many involve partnerships with local industry, where waste heat from process industries supplies the local district heating network; one such system in Finland uses waste heat from a steel producer.

While some UK cities are now using their waste incineration plants to generate electricity, few connect such facilities to a district heating system to realise the full economic and environmental benefits.

"The analysis we've carried out in Sheffield could be mirrored across other UK cities," says Professor Vida Sharifi, who led the research. "Heating buildings is responsible for half the energy use in the UK. The government have estimated that if district heating were used across the UK in areas with high heat demand, it could supply around 5.5 million properties and contribute a fifth of the UK's heating needs.

"District heating is a good way to decarbonise the energy supply to meet national and international legislation on emission limits. And, importantly for local people, this form of energy can also be used to provide low-cost heating, especially to those in areas of fuel poverty."

Abigail Chard | EurekAlert!
Further information:
http://www.campuspr.co.uk

Further reports about: CO2 CO2 emission energy source thermal energy waste heat

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>