Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research maps the city's heat

14.05.2012
Steel – the traditional industry for which the UK city of Sheffield is so well known – could help provide a green alternative for heating the city's homes and businesses, alongside other renewable energy sources.

Experts from the University of Sheffield's Faculty of Engineering believe that the many steel plants located just outside the city centre could be connected to Sheffield's existing district heating network to provide an extra 20 MW of thermal energy, enough to heat around 2,000 homes.

"It actually costs the steel plants to reduce the temperature of the flue gas and to cool the water used during steel manufacture. Recovering this heat and transferring it to the district heating network reduces the cost of heat production, improves energy efficiency and is beneficial to the environment, making a 'win, win' situation for the steelworks and the city," says Professor Jim Swithenbank, who played a key role in developing the first phase of Sheffield's district heating system in late 1970s.

Sheffield already has the largest district heating system in the UK, powered through an energy recovery facility that burns the city's non-recyclable waste. Each year this generates 21 MW of electricity, enough to power 22,000 homes, and 60 MW of thermal energy in the form of super-heated steam, which is pumped around the city in a 44 km network of underground pipes. This provides space heating and hot water to over 140 public buildings and 3,000 homes across the city, reducing the city's CO2 emissions by 21,000 tonnes a year.

Engineers from the University's SUWIC Research Centre (Department of Chemical and Biological Engineering) have mapped out a possible expansion of the network which could reduce Sheffield's annual CO2 emissions by a further 80,000 tonnes.

In the study funded by the UK Engineering and Physical Sciences Research Council (EPSRC), the researchers used digital mapping software (GIS) to identify areas of high energy demand against potential new energy sources, such as the steel works and a new biomass plant currently under construction on the site of a former coal-fired power station.

This enabled them to assess where expansion of the network would be most advantageous. Their findings are published today (May 14) in the Journal of Energy Conversion and Management.

District heating, particularly using waste as a fuel, can provide cost-effective and low-carbon energy to local populations, without exposure to the fluctuations of energy markets.

Such systems are currently rare in the UK, although widely used throughout the rest of the world. Many involve partnerships with local industry, where waste heat from process industries supplies the local district heating network; one such system in Finland uses waste heat from a steel producer.

While some UK cities are now using their waste incineration plants to generate electricity, few connect such facilities to a district heating system to realise the full economic and environmental benefits.

"The analysis we've carried out in Sheffield could be mirrored across other UK cities," says Professor Vida Sharifi, who led the research. "Heating buildings is responsible for half the energy use in the UK. The government have estimated that if district heating were used across the UK in areas with high heat demand, it could supply around 5.5 million properties and contribute a fifth of the UK's heating needs.

"District heating is a good way to decarbonise the energy supply to meet national and international legislation on emission limits. And, importantly for local people, this form of energy can also be used to provide low-cost heating, especially to those in areas of fuel poverty."

Abigail Chard | EurekAlert!
Further information:
http://www.campuspr.co.uk

Further reports about: CO2 CO2 emission energy source thermal energy waste heat

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>